Subscribe to RSS
DOI: 10.1055/s-0029-1219798
Regioselective Reductive Ring Opening of Benzylidene Acetals Using Triethylsilane and Iodine
Publication History
Publication Date:
23 March 2010 (online)

Abstract
Novel reaction conditions have been developed for the regioselective reductive ring opening of benzylidene acetals in carbohydrate derivatives using triethylsilane and molecular iodine. The reaction is fast, compatible with most of the functional groups encountered in the oligosaccharide synthesis, and yields were excellent. The reaction conditions are equally effective in thioglycosides.
Key words
carbohydrate - benzylidene acetal - regioselective - iodine - triethylsilane
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Preparative Carbohydrate Chemistry
Hanessian S. Marcel Dekker; New York: 1997.Reference Ris Wihthout Link - 1b
Carbohydrates in Best Synthetic Methods
Osborn HMI. Academic Press; London: 2003.Reference Ris Wihthout Link - 1c
The
Organic Chemistry of Sugars
Levy DE.Fugedi P. Taylor and Francis; New York: 2006.Reference Ris Wihthout Link - 1d
Nicolaou KC.Mitchell HJ. Angew. Chem. Int. Ed. 2001, 40: 1576Reference Ris Wihthout Link - 2a
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis 3rd ed.: John Wiley and Sons; New York: 1999. p.217-224Reference Ris Wihthout Link - 2b
Kocienski PJ. J. Chem. Soc., Perkin Trans. 1 2001, 2109Reference Ris Wihthout Link - 2c
Meresse P.Monneret C.Bertounesque E. Tetrahedron 2004, 60: 2657Reference Ris Wihthout Link - 3
Garegg PJ.Hultberg H.Wallin S. Carbohydr. Res. 1982, 108: 97 - 4
Garegg PJ. Pure Appl. Chem. 1984, 56: 845 - 5
DeNinno MP.Etienne JB.Duplantier KC. Tetrahedron Lett. 1995, 36: 669 - 6
Debenham SD.Toone EJ. Tetrahedron: Asymmetry 2000, 11: 385 - 7
Bhattacharyya SS.Gorin PAJ. Can. J. Chem. 1969, 47: 1195 - 8
Tanaka N.Ogawa I.Yoshigase S.Nokami J. Carbohydr. Res. 2008, 343: 2675 - 9
Daragics K.Fugedi P. Tetrahedron Lett. 2009, 50: 2914 - 10
Jiang L.Chan T.-H. Tetrahedron Lett. 1998, 39: 355 - 11
Tani S.Sawadi S.Kojima M.Akai S.Sato K.-i. Tetrahedron Lett. 2007, 48: 3103 - 12a
Wang C.-C.Luo S.-Y.Shie C.-R.Hung S.-C. Org. Lett. 2002, 4: 847Reference Ris Wihthout Link - 12b
Shie C.-R.Tzeng Z.-H.Kulkarni SS.Uang B.-J.Hsu C.-Y.Hung S.-C. Angew. Chem. Int. Ed. 2005, 44: 1665Reference Ris Wihthout Link - 12c
Oikawa M.Liu W.-C.Nakai Y.Koshida S.Fukase K.Kusumoto S. Synlett 1996, 1179Reference Ris Wihthout Link - 13a
Guchhait G.Misra AK. Tetrahedron: Asymmetry 2009, 20: 1791Reference Ris Wihthout Link - 13b
Pandey S.Ghosh S.Misra AK. Synthesis 2009, 2584Reference Ris Wihthout Link - 13c
Panchadhayee R.Misra AK. Tetrahedron: Asymmetry 2009, 20: 1550Reference Ris Wihthout Link - 13d
Mandal PK.Misra AK. Synthesis 2009, 1348Reference Ris Wihthout Link - 13e
Mukherjee C.Misra AK. Tetrahedron: Asymmetry 2009, 20: 473Reference Ris Wihthout Link - 13f
Mandal PK.Misra AK. Tetrahedron 2008, 64: 8685Reference Ris Wihthout Link - 13g
Mandal PK.Misra AK. Glycoconjugate J. 2008, 25: 713Reference Ris Wihthout Link - 13h
Mukherjee C.Misra AK. Tetrahedron: Asymmetry 2008, 19: 2746Reference Ris Wihthout Link - 13i
Panchadhayee R.Misra AK. Glycoconjugate J. 2008, 25: 817Reference Ris Wihthout Link - 13j
Kumar R.Maulik PR.Misra AK. Glycoconjugate J. 2008, 25: 511Reference Ris Wihthout Link - 13k
Mukherjee C.Misra AK. Glycoconjugate J. 2008, 25: 611Reference Ris Wihthout Link - 13l
Tiwari P.Misra AK. Glycoconjugate J. 2008, 25: 85Reference Ris Wihthout Link - 13m
Mukherjee C.Misra AK. Glycoconjugate J. 2008, 25: 111Reference Ris Wihthout Link - 13n
Mandal PK.Misra AK. Synthesis 2007, 2660Reference Ris Wihthout Link - 13o
Agnihotri G.Mandal PK.Misra AK. Tetrahedron 2007, 63: 7240Reference Ris Wihthout Link - 14
Kartha KPR.Aloui M.Field RA. Tetrahedron Lett. 1996, 37: 5175 - 15
Sakagami M.Hamana H. Tetrahedron Lett. 2000, 41: 5547 - 16
Madiyalakan R.Chowdhary MS.Rana SS.Matta KL. Carbohydr. Res. 1986, 152: 183 - 17
You Y.Yao L.Biao Y. J. Am. Chem. Soc. 2009, 131: 12076 - 18
Soderman P.Jansson P.-E.Widmalm G. J. Chem. Soc., Perkin Trans. 2 1998, 639 - 19
Satoshi S.Kazuya T.Yoshihito U.Matsuda A. J. Org. Chem. 1998, 63: 8815 - 20
Shinya H.Seeberger PH. Chem. Asian J. 2007, 2: 1447 - 21
Yashunsky DV.Higson AP.Ross AJ.Nikolaev AV. Carbohydr. Res. 2001, 336: 243 - 22
Zhang Z.Magnusson G. J. Org. Chem. 1996, 61: 2383
References and Notes
Spectroscopic data for novel products
are presented below. To aid assignments, data were taken after acetylation
of the products.
4-Methoxyphenyl 2,3,4-Tri-
O
-acetyl-6-
O
-benzyl-β-
d
-galactopyranoside
(Acetylated 22)
¹H NMR (500 MHz,
CDCl3): δ = 7.25-7.17 (m,
5 H, ArH), 6.87 (d, J = 9.0
Hz, 2 H, ArH), 6.70 (d, J = 9.0
Hz, 2 H, ArH), 5.40 (d, J = 3.3
Hz, 1 H, H-4), 5.31 (dd, J = 7.9
Hz each, 1 H, H-2), 4.99 (dd, J = 10.4,
3.4 Hz, 1 H, H-3), 4.83 (d, J = 7.9
Hz, 1 H, H-1), 4.48 (d, J = 11.9
Hz, 1 H, PhCH2a), 4.36 (d, J = 11.9
Hz, 1 H, PhCH2b), 3.87-3.84 (m, 1 H, H-5), 3.68
(s, 3 H, OCH3), 3.52-3.44 (m, 2 H, H-6a,b),
2.01, 1.99, 1.93 (3 s, 9 H, 3 COCH3). ¹³C
NMR (125 MHz, CDCl3): δ = 170.3, 170.1,
169.5 (3 COCH3), 156.0-114.9
(ArC), 101.1 (C-1), 73.9, 72.9, 71.5, 69.4, 67.9, 67.8, 55.8, 21.1,
21.0, 20.9 (3 COCH3). ESI-MS
(C26H30O10): m/z = 525.1 [M + Na]+.
Phenyl 2,3,4-Tri-
O
-acetyl-6-
O
-benzyl-1-seleno-β-d-glucopyranoside (Acetylated 25)
¹H
NMR (500 MHz, CDCl3): δ = 7.59-7.21
(m, 10 H, ArH), 5.15 (t, J = 9.2
Hz, 1 H, H-3), 5.01 (t, J = 9.8
Hz, 1 H, H-2), 4.97 (t, J = 9.2
Hz, 1 H, H-4), 4.88 (d, J = 9.9
Hz, 1 H, H-1), 4.53-4.46 (2 d, J = 11.8
Hz, 2 H, PhCH2), 3.67-3.63 (m, 1 H, H-5), 3.56-3.54
(m, 2 H, H-6a,b), 2.14, 2.05, 1.96 (3 s, 9 H, 3 COCH3). ¹³C
NMR (125 MHz, CDCl3): δ = 170.4, 169.6,
169.4 (3 COCH3), 138.2-127.6
(ArC), 81.4 (C-1), 78.9, 74.4, 73.9, 71.3, 69.4 (2 C), 21.1, 20.9
(2 C) (3 COCH3). ESI-MS (C25H28O8Se): m/z = 559.1 [M + Na]+.
Methyl (2,3,4-Tri-
O
-acetyl-6-
O
-benzyl-β-d-glucopyranosyl)-(1→6)-2,3,4-tri-
O
-acetyl-α-d-glucopyranoside (Acetylated 26)
¹H
NMR (500 MHz, CDCl3): δ = 7.33-7.24
(m, 5 H, ArH), 5.43 (t, J = 10.0
Hz each, 1 H, H-3A), 5.16 (t, J = 9.4
Hz each, 1 H, H-4A), 5.03 (t, J = 9.5
Hz each, 1 H, H-3B), 4.96 (dd, J = 7.9
Hz each, 1 H, H-2B), 4.90 (t, J = 9.4
Hz each, 1 H, H-4B), 4.88 (d, J = 3.6
Hz, 1 H, H-1A), 4.82 (dd, J = 10.1, 3.6
Hz, 1 H, H-2A), 4.55 (d, J = 11.9
Hz, 1 H, PhCH2a), 4.52 (d, J = 7.9
Hz, 1 H, H-1B), 4.48 (d, J = 11.9
Hz, 1 H, PhCH2b), 3.94-3.89 (m, 2 H, H-6abA),
3.65-3.61 (m, 1 H, H-5B), 3.55-3.51
(m, 3 H, H-5A, H-6a,bB), 3.37 (s, 3 H, OCH3), 2.06,
2.03, 1.98, 1.89 (4 s, 18 H, 6 COCH3). ¹³C
NMR (125 MHz, CDCl3): δ = 170.4, 170.1,
170.0, 169.7, 169.6, 169.4 (6 COCH3),
137.9-128.1 (ArC), 101.2 (C-1B), 96.8 (C-1A), 73.9,
73.7, 73.3, 71.6, 71.2, 70.6, 69.7, 69.4, 69.2, 68.5, 68.3, 55.5
(OCH3), 21.1 (2 C), 21.0 (2 C), 20.9 (2 C). ESI-MS (C30H40O16): m/z = 679.2 [M + Na]+.