Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2010(4): 579-582
DOI: 10.1055/s-0029-1219210
DOI: 10.1055/s-0029-1219210
LETTER
© Georg Thieme Verlag
Stuttgart ˙ New York
A Novel Asymmetric Azaspirocyclisation Using a Morita-Baylis-Hillman-Type Reaction
Further Information
Received
3 December 2009
Publication Date:
19 January 2010 (online)
Publication History
Publication Date:
19 January 2010 (online)
![](https://www.thieme-connect.de/media/synlett/201004/lookinside/thumbnails/10.1055-s-0029-1219210-1.jpg)
Abstract
A Morita-Baylis-Hillman-type reaction has been applied to the asymmetric preparation of azaspirocycles in high yield and diastereoselectivity. The optimisation of the reaction is discussed and a model for the origin of diastereoselectivity is proposed.
Key Words
Morita-Baylis-Hillman-type reaction - azaspirocyclisation - spiro compounds - asymmetric synthesis - diastereoselectivity
- Supporting Information for this article is available online:
- Supporting Information
- For isolation of cylindricines, see:
-
1a
Blackman AJ.Li CP.Hockless DCR.Skelton BW.White AH. Tetrahedron 1993, 49: 8645 -
1b
Li CP.Blackman A.
J. Aust. J. Chem. 1994, 47: 1355 -
1c
Li CP.Blackman A. J. Aust. J. Chem. 1995, 48: 955 -
1d
Patil AD.Freyer AJ.Reichwein R.Carte B.Killmer LB.Faucette L.Johnson RK.Faulkner DJ. Tetrahedron Lett. 1997, 38: 363 -
1e
Sauviat MP.Vercauteren J.Grimaud N.Juge M.Nabil M.Petit JY.Biard JF. J. Nat. Prod. 2006, 69: 558 -
1f For a review on synthesis,
see:
Weinreb SM. Chem. Rev. 2006, 106: 2531 - For isolation of histrionicotoxins, see:
-
2a
Daly JW.Karle I.Myers CW.Tokuyama T.Waters JA.Witkop B. Proc. Natl. Acad. Sci. U.S.A. 1971, 68: 1870 -
2b
Karle IL. J. Am. Chem. Soc. 1973, 95: 4036 -
2c
Tokuyama T.Uenoyama K.Brown G.Daly JW.Witkop B. Helv. Chim. Acta 1974, 57: 2597 -
2d
Daly JW.Witkop B.Tokuyama T.Nishikawa T.Karle IL. Helv. Chim. Acta 1977, 60: 1128 -
2e
Tokuyama T.Daly JW. Tetrahedron 1983, 39: 41 -
2f
Tokuyama T.Nishimori N.Karle IL.Edwards MW.Daly JW. Tetrahedron 1986, 42: 3453 -
2g
Spande TF.Garraffo HM.Daly JW.Tokuyama T.Shimada A. Tetrahedron 1992, 48: 1823 -
2h For a review on synthesis,
see:
Sinclair A.Stockman RA. Nat. Prod. Rep. 2007, 24: 298 -
3a For
isolation of halichlorine, see:
Kuramoto M.Tong C.Yamada K.Chiba T.Hayashi Y.Uemura D. Tetrahedron Lett. 1996, 37: 3867 -
3b For isolation of the pinnaic
acids, see:
Chou T.Kuramoto M.Otani Y.Shikano M.Yazawa K.Uemura D. Tetrahedron Lett. 1996, 37: 3871 -
3c For a review on synthesis,
see:
Clive DLJ.Yu ML.Wang J.Yeh VSC.Kang SZ. Chem. Rev. 2005, 105: 4483 - 4
Myers EL.de Vries JG.Aggarwal VK. Angew. Chem. Int. Ed. 2007, 46: 1893 - 5
Myers EL.Butts CP.Aggarwal VK. Chem. Commun. 2006, 42: 4434 - The addition of dimethyl sulfide to cyclohexenone in the presence of TMSOTf is 1,4-selective and reversible. The silyloxysulfonium salt produced is thermally unstable above -40 ˚C. At -20 ˚C the equilibrium lies entirely on the side of the cyclohexenone:
-
6a
Kim S.Park JH.Kim YG.Lee JM. J. Chem. Soc., Chem. Commun. 1993, 1188 -
6b
Lee K.Kim H.Miura T.Kiyota K.Kusama H.Kim S.Iwasawa N.Lee PH. J. Am. Chem. Soc. 2003, 125: 9682 -
7a
Burgess LE.Meyers AI. J. Am. Chem. Soc. 1991, 113: 9858 -
7b
Burgess LE.Meyers AI. J. Org. Chem. 1992, 57: 1656 -
7c
Meyers AI.Brengel GP. Chem. Commun. 1997, 1 -
7d
Amat M.Llor N.Hidalgo J.Escolano C.Bosch J. J. Org. Chem. 2003, 68: 1919 -
7e
Amat M.Escolano C.Llor N.Huguet M.Perez M.Bosch J. Tetrahedron: Asymmetry 2003, 14: 1679 -
7f
Amat M.Perez M.Llor N.Martinelli M.Molins E.Bosch J. Chem. Commun. 2004, 1602 -
7g
Amat M.Perez M.Minaglia AT.Casamitjana N.Bosch J. Org. Lett. 2005, 7: 3653 -
7h
Amat M.Escolano C.Gomez-Esque A.Lozano O.Llor N.Griera R.Molins E.Bosch J. Tetrahedron: Asymmetry 2006, 17: 1581 -
7i
Amat M.Lozano O.Escolano C.Molins E.Bosch J. J. Org. Chem. 2007, 72: 4431 -
7j
Amat M.Perez M.Minaglia AT.Peretto B.Bosch J. Tetrahedron 2007, 63: 5839 -
7k
Amat M.Perez M.Minaglia AT.Bosch J. J. Org. Chem. 2008, 73: 6920 -
7l For a review on stereochemistry of
nucleophilic addition to aminals using this auxiliary, see:
Husson HP.Royer J. Chem. Soc. Rev. 1999, 28: 383 - 8
Bahajaj AA.Vernon JM.Wilson GD. Tetrahedron 2004, 60: 1247 - 9
Bahajaj AA.Moore MH.Vernon JM. Tetrahedron 2004, 60: 1235 - The following Lewis acids and nucleophile combinations were screened for the MBH-type reaction without success:
-
10a HCl:
Melching KH.Hiemstra H.Klaver WJ.Speckamp WN. Tetrahedron Lett. 1986, 27: 4799 -
10b TiCl4 + Bu4NI:
Yagi K.Turitani T.Shinokubo H.Oshima K. Org. Lett. 2002, 4: 3111 -
10c TMSI:
Roe SJ.Stockman RA. Chem. Commun. 2008, 3432 -
10d TfOH + SMe2:
Kurasaki H.Okamoto I.Morita N.Tamura O. Org. Lett. 2009, 11: 1179 -
12a For α,β-unsaturated
aldehyde reduction, see:
Stevens RV.Lawrence DS. Tetrahedron 1985, 41: 93 -
12b
For Birch reduction, see ref 7j.
-
13a The
original paper concerns the effect of conformation of a stereocentre
a to a carbonyl group on facial selectivity of nucleophilic addition
to the carbonyl:
Cherest M.Felkin H.Prudent N. Tetrahedron Lett. 1968, 2199 -
13b
Anh NT. Top. Curr. Chem. 1980, 88: 145 - 14
Chen MD.He MZ.Zhou X.Huang LQ.Ruan YP.Huang PQ. Tetrahedron 2005, 61: 1335 - 15
Stocker BL.Teesdale-Spittle P.Hoberg JO. Eur. J. Org. Chem. 2004, 330
References and Notes
We were not able to obtain crystals of the 5,5-spirocycle for analysis by X-ray diffraction, and we were unsuccessful in finding NOE correlations to assign its stereochemistry. The spirocentre stereochemistry is therefore not known in this case.