Synlett 2010(3): 488-492  
DOI: 10.1055/s-0029-1219189
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Practical Synthesis of Sugar-Derived Cyclic Nitrones: Powerful Synthons for the Synthesis of Iminosugars

Wu-Bao Wanga,b, Mu-Hua Huanga, Yi-Xian Lia,b, Pei-Xin Ruia, Xiang-Guo Hua,b, Wei Zhanga,b, Jia-Kun Sua,b, Zhao-Lan Zhanga,b, Jian-She Zhua,b, Wei-Hua Xua, Xian-Qing Xiea, Yue-Mei Jia*a, Chu-Yi Yu*a
a Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
Fax: +86(10)82616433; e-Mail: yucy@iccas.ac.cn;
b Graduate University of The Chinese Academy of Sciences, Beijing 100049, P. R. of China
Further Information

Publication History

Received 28 October 2009
Publication Date:
11 January 2010 (online)

Abstract

Sugar-derived cyclic nitrones were synthesized from the corresponding aldoses through an efficient and practical procedure involving a seven-step reaction sequence in good to excellent overall yield (10-42%). This synthetic strategy, requiring only inexpensive reagents, is easy to perform and hence suitable for large-scale preparations.

    References and Notes

  • For books, see:
  • 1a Stütz AE. Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond   Wiley-VCH; Weinheim: 1999. 
  • 1b Compain P. Martin OR. Iminosugars: From Synthesis to Therapeutic Applications   John Wiley & Sons; Chichester: 2007. 
  • For reviews, see:
  • 1c Asano N. Nash RJ. Molyneux RJ. Fleet GWJ. Tetrahedron: Asymmetry  2000,  11:  1645 
  • 1d Afarinkia K. Bahar A. Tetrahedron: Asymmetry  2005,  16:  1239 
  • For reviews, see:
  • 2a Winchester B. Fleet GWJ. Glycobiology  1992,  2:  199 
  • 2b Sears P. Wong CH. Chem. Commun.  1998,  1161 
  • 2c Compain P. Martin OR. Curr. Top. Med. Chem.  2003,  3:  541 
  • For reviews, see:
  • 3a Watson AA. Fleet GWJ. Asano N. Molyneux RJ. Nash RJ. Phytochemistry  2001,  56:  265 
  • 3b Asano N. Glycobiology  2003,  13:  93R 
  • 3c Ye XS. Sun F. Liu M. Li Q. Wang Y. Zhang G. Zhang LH. Zhang XL. J. Med. Chem.  2005,  48:  3688 
  • 4a Poitout L. LeMerrer Y. Depezay JC. Tetrahedron Lett.  1996,  37:  1609 
  • 4b Ichikawa Y. Igarashi Y. Ichikawa M. Suhara Y. J. Am. Chem. Soc.  1998,  120:  3007 
  • 4c Pearson MSM. Mathe-Allainmat M. Fargeas V. Lebreton J. Eur. J. Org. Chem.  2005,  2159 
  • 4d Asano N. Ikeda K. Yu L. Kato A. Takebayashi K. Adachi I. Kato I. Ouchi H. Takahata H. Fleet GWJ. Tetrahedron: Asymmetry  2005,  16:  223 
  • 4e Chang MY. Kung YH. Ma CC. Chen ST. Tetrahedron  2007,  63:  1339 
  • 4f Mohan S. Pinto BM. Carbohydr. Res.  2007,  342:  1551 
  • 5a Tsou EL. Chen SY. Yang MH. Wang SC. Cheng TRR. Cheng WC. Bioorg. Med. Chem.  2008,  16:  10198 
  • 5b Stecko S. Jurczak M. Urbanczyk-Lipkowska Z. Solecka J. Chmielewski M. Carbohydr. Res.  2008,  343:  2215 
  • 5c Stecko S. Mames A. Furman B. Chmielewski M. J. Org. Chem.  2009,  74:  3094 
  • 6 Ueda T. Inada M. Okamoto I. Morita N. Tamura O. Org. Lett.  2008,  10:  2043 
  • 7a Kuznetsov ML. Kukushkin VY. J. Org. Chem.  2006,  71:  582 
  • 7b Kuznetsov ML. Nazarov AA. Kozlova LV. Kukushkin VY. J. Org. Chem.  2007,  72:  4475 
  • 7c Badoiu A. Brinkmann Y. Viton F. Kundig EP. Pure Appl. Chem.  2008,  80:  1013 
  • 7d Stecko S. Pasniczek K. Jurczak M. Solecka J. Chmielewski M. Pol. J. Chem.  2009,  83:  237 
  • 7e Marradi M. Corsi M. Cicchi S. Bonanni M. Cardona F. Goti A. Heterocycles  2009,  79:  883 
  • 8a Merino P. Franco S. Merchan FL. Tejero T. Synlett  2000,  442 
  • 8b Merino P. Revuelta J. Tejero T. Cicchi S. Goti A. Eur. J. Org. Chem.  2004,  776 
  • 8c Murga J. Portoles R. Falomir E. Carda M. Marco JA. Tetrahedron: Asymmetry  2005,  16:  1807 
  • 8d Yang SH. Caprio V. Synlett  2007,  1219 
  • 8e Berini C. Minassian F. Pelloux-Leon N. Denis JN. Vallee Y. Philouze C. Org. Biomol. Chem.  2008,  6:  2574 
  • 9 Merino P. Delso I. Tejero T. Cardona F. Marradi M. Faggi E. Parmeggiani C. Goti A. Eur. J. Org. Chem.  2008,  2929 
  • 10a Masson G. Zeghida W. Cividino P. Py S. Vallee Y. Synlett  2003,  1527 
  • 10b Chavarot M. Rivard M. Rose-Munch F. Rose E. Py S. Chem. Commun.  2004,  2330 
  • 10c Desvergnes S. Py S. Vallee Y. J. Org. Chem.  2005,  70:  1459 
  • 10d Masson G. Philouze C. Py S. Org. Biomol. Chem.  2005,  3:  2067 
  • 10e Desvergnes S. Desvergnes V. Martin OR. Itoh K. Liu HW. Py S. Bioorg. Med. Chem.  2007,  15:  6443 
  • 10f Rehák J. Fiera L. Prónayová N. ARKIVOC  2009,  (vi):  146 
  • 10g Wu SF. Zheng X. Ruan YP. Huang PQ. Org. Biomol. Chem.  2009,  7:  2967 
  • 11a Toyao A. Tamura O. Takagi H. Ishibashi H. Synlett  2003,  35 
  • 11b Cardona F. Moreno G. Guarna F. Vogel P. Schuetz C. Merino P. Goti A. J. Org. Chem.  2005,  70:  6552 
  • 11c Gurjar MK. Borhade RG. Puranik VG. Ramana CV. Tetrahedron Lett.  2006,  47:  6979 
  • 12a Goti A. Cacciarini M. Cardona F. Cordero FM. Brandi A. Org. Lett.  2001,  3:  1367 
  • 12b Yu CY. Huang MH. Org. Lett.  2006,  8:  3021 
  • 13a Revuelta J. Cicchi S. Goti A. Brandi A. Synthesis  2007,  485 
  • 13b Grigor’ev IA. ARKIVOC  2009,  (iv):  136 
  • 14a Cicchi S. Marradi M. Corsi M. Faggi C. Goti A. Eur. J. Org. Chem.  2003,  4152 
  • 14b Cardona F. Gorini L. Goti A. Lett. Org. Chem.  2006,  3:  118 
  • 14c Bonanni M. Marradi M. Cicchi S. Goti A. Synlett  2008,  197 
  • 15a vandenBroek L. Tetrahedron  1996,  52:  4467 
  • 15b Robinson AJ. DeLucca I. Drummond S. Boswell GA. Tetrahedron Lett.  2003,  44:  4801 
  • 16a Soldaini G. Cardona F. Goti A. Org. Lett.  2007,  9:  473 
  • 16b Cardona F. Bonanni M. Soldaini G. Goti A. ChemSusChem  2008,  1:  327 
  • 17a Oppolzer W. Tamura O. Deerberg J. Helv. Chim. Acta  1992,  75:  1965 
  • 17b Oppolzer W. Merifield E. Helv. Chim. Acta  1993,  76:  957 
  • 17c Oppolzer W. Deerberg J. Tamura O. Helv. Chim. Acta  1994,  77:  554 
  • 17d Chackalamannil S. Wang YG. Tetrahedron  1997,  53:  11203 
  • 18a Holzapfel CW. Crous R. Heterocycles  1998,  48:  1337 
  • 18b Cicchi S. Corsi M. Brandi A. Goti A. J. Org. Chem.  2002,  67:  1678 
  • 18c Cardona F. Faggi E. Liguori F. Cacciarini M. Goti A. Tetrahedron Lett.  2003,  44:  2315 
  • 18d Cicchi S. Marradi M. Vogel P. Goti A. J. Org. Chem.  2006,  71:  1614 
  • 18e Tsou EL. Yeh YT. Liang PH. Cheng WC. Tetrahedron  2009,  65:  93 
  • 18f Racine E. Bello C. Gerber-Lemaire S. Vogel P. Py S. J. Org. Chem.  2009,  74:  1766 
  • 19 Tamura O. Toyao A. Ishibashi H. Synlett  2002,  1344 
  • 20a Joshi U. Josse S. Pipelier M. Chevallier F. Pradère J.-P. Hazard R. Legoupy S. Huet F. Dubreuil D. Tetrahedron Lett.  2004,  45:  1031 
  • 20b Nadein ON. Kornienko A. Org. Lett.  2004,  6:  831 
21

General methods for the synthesis of 5 and 10:
Method A: Compounds 1 and 6 were prepared from the corresponding aldoses (90 g 0.6 mol) in three steps according to the literature²0 and were used directly in the next step without further purification. NH2OMe˙HCl (55.12 g, 0.66 mol, 1.1 equiv) and Et3N (91.9 mL, 0.66 mol, 1.1 equiv) were added to a solution of crude compound 1 or 6 (crude product prepared from 0.6 mol aldose) in anhydrous CH2Cl2 (300 mL). The reaction reached completion after vigorous stirring for about 12 h. The reaction mixture was then concentrated in vacuo and the resulting mixture was dissolved in EtOAc-H2O. The organic phase was separated and the aqueous phase was extracted with EtOAc (3 × 150 mL). The combined organic phases were dried with anhydrous Na2SO4 and filtered, the filtrate was concentrated in vacuo to give the crude product 2 or 7, which was used directly in the next step of reaction without further purification. To an ice-cooled solution of 2 or 7 in Et3N (91.9 mL, 0.66 mol, 1.1 equiv) and CH2Cl2 (300 mL), was added methanesulfonyl chloride (51.08 mL, 0.66 mol, 1.1 equiv) slowly, and the mixture was allowed to warm gradually to r.t. After 1 h, the reaction mixture was quenched by addition of H2O (200 mL). The organic phase was separated and the aqueous phase was extracted with EtOAc (3 × 150 mL). The combined organic phases were dried over anhydrous MgSO4. After filtration, the solvent was removed in vacuo to give crude product 3 or 8 as a yellow oil, which was used directly in the next step without further purification. To a well-stirred solution of 3 or 8 in THF (400 mL), p-TsOH (114 g, 0.6 mol) and aq HCHO (37%, 150 mL) were added subsequently. After stirring for 36 h, the reaction was neutralized with sat. aq NaHCO3. EtOAc (600 mL) was added to the reaction mixture, the organic phase was separated and the aqueous phase was extracted with EtOAc (3 × 150 mL). The combined organic phases were dried with anhydrous Na2SO4. After filtration, the filtrate was concentrated in vacuo, the resulting crude product 4 or 9 was used directly in the next step of reaction without further purification. A solution of NH2OH˙HCl (93.15 g, 1.35 mol) and NaHCO3 (113.4 g, 1.35 mol) in H2O (150 mL) was added to the solution of crude 4 or 9 in EtOH (600 mL) dropwise. The reaction mixture was stirred at r.t. for 12 h and then stirred at about 60 ˚C until TLC showed the reaction to have reached completion. The solvents were removed in vacuo and the residue was dissolved in EtOAc (300 mL) and H2O (200 mL). The organic phase was separated and the aqueous phase was extracted with EtOAc (3 × 150 mL). The combined organic phases were dried with anhydrous Na2SO4. After filtration and concentration in vacuo, the resulting crude product was either recrystallized or purified by flash column chromatography (petroleum ether-EtOAc, 2:1→1:2). Method B: The same procedure as method A was used with purified compounds 1 and 6 as starting material. Compound 5a: 129.0 g (23% from 200 g d-arabinose); 79.4 g from 210.3 g 1a (38%). Yellow oil; [α] d ²0 -78 (c 1.08, CH2Cl2) {Lit¹8d [α] d ²³ -75.9 (c 0.54, CH2Cl2)}. IR (thin film): 3030 (w), 2866 (m), 1582 (s), 1496 (w), 1454 (s), 1363 (m), 1095 (s), 737 (s), 697 (s) cm. ¹H NMR (300 MHz, CDCl3): δ = 7.27-7.14 (m, 15 H, Ph), 6.73 (s, 1 H, H-2), 4.67 (t, J = 2.1 Hz, 1 H, H-3), 4.58-4.38 (m, 6 H, PhCH 2), 4.28 (dd, J = 7.6, 4.5 Hz, 1 H, H-4), 4.08-4.03 (m, 1 H, H-5), 3.90 (dd, J = 10.1, 4.3 Hz, 1 H, H-6), 3.73 (dd, J = 10.1, 1.6 Hz, 1 H, H-6). ¹³C NMR (75 MHz, CDCl3): δ = 138.0, 137.4, 137.3, 133.4 (C-2), 128.7, 128.6, 128.4, 128.2, 128.1, 128.0, 127.9, 127.6 (Ph), 83.2 (C-3), 80.6 (C-4), 74.2 (C-5), 73.6, 73.2, 72.5, 64.5 (C-6). Compound 10a: 88.2 g (42% from 75 g d-arabinose); 94 g from 181.6 g 6a (52%). Light-yellow oil; [α] d ²0 -44 (c 1.17, CHCl3). IR (thin film): 2960 (s), 2925 (s), 2855 (s), 1597 (w), 1454 (m), 1260 (s), 1023 (s), 800 (s), 739 (m), 698 (m) cm. ¹H NMR (300 MHz, CDCl3): δ = 7.33-7.25 (m, 15 H, Ph), 7.01 (d, J = 2.9 Hz, 1 H, H-2), 4.94-4.58 (m, 6 H, PhCH2), 4.31 (d, J = 3.6 Hz, 1 H, H-3), 4.06-3.82 (m, 4 H, H-6, H-4, H-5). ¹³C NMR (75 MHz, CDCl3): δ = 137.6, 137.3, 128.6, 133.4 (C-2), 128.6, 128.5, 128.2, 128.1, 128.0, 127.9, 127.8 (Ph), 74.6, 73.5, 72.9, 72.8, 72.1, 71.4 (C-3, C-4, C-5), 60.0 (C-6). TOF-HRMS (ESI+): m/z [M + H]+ calcd for C26H28NO4: 418.2013; found: 418.2001.