Synlett 2010(2): 309-312  
DOI: 10.1055/s-0029-1219168
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Silver-Catalyzed Diallylation and Dibenzylation of gem-Dibromoalkanes with Grignard Reagents

Yukihiro Mitamura, Hidenori Someya, Hideki Yorimitsu*, Koichiro Oshima*
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo, Kyoto 615-8510, Japan
Fax: +81(75)3832438; e-Mail: yori@orgrxn.mbox.media.kyoto-u.ac.jp; e-Mail: oshima@orgrxn.mbox.media.kyoto-u.ac.jp;
Further Information

Publication History

Received 17 August 2009
Publication Date:
04 January 2010 (online)

Abstract

Treatment of gem-dibromoalkanes with allylic Grignard reagents in the presence of a catalytic amount of silver triflate in diethyl ether leads to diallylation to afford 1,6-heptadiene derivatives. Benzylic Grignard reagents also undergo a similar transformation to yield 1,3-diphenylpropanes. Controlled sequential treatment of gem-dibromoalkane with two different Grignard reagents results in selective displacement of the two bromine atoms with allylic and benzylic moieties.

    References and Notes

  • 1 Rowlands GJ. In Science of Synthesis (Houben-Weyl)   Vol. 29:  Warriner SI. Thieme; Stuttgart: 2007.  Chap. 29.2.
  • For pioneering studies on cuprates, see:
  • 2a Kitatani K. Hiyama T. Nozaki H. Bull. Chem. Soc. Jpn.  1977,  50:  1600 
  • 2b Kitatani K. Hiyama T. Nozaki H. J. Am. Chem. Soc.  1976,  98:  2362 
  • 2c Corey EJ. Posner GH. J. Am. Chem. Soc.  1967,  89:  3911 
  • 2d Corey EJ. Posner GH. Tetrahedron Lett.  1970,  11:  315 
  • 2e Posner GH. Brunelle DJ. Tetrahedron Lett.  1972,  13:  293 
  • 2f Martínez AG. Fernández AH. Alvarez RM. Barcina JO. Gómez CG. Subramanian LR. Synthesis  1993,  1063 
  • For selected recent reactions with other organometallic reagents, see:
  • 3a Harada T. Kotani Y. Katsuhira T. Oku A. Tetrahedron Lett.  1991,  32:  1573 
  • 3b Shibli A. Varghese JP. Marek I. Synlett  2001,  818 
  • 3c Kakiya H. Shinokubo H. Oshima K. Bull. Chem. Soc. Jpn.  2000,  73:  2139 
  • 3d Inoue A. Kondo J. Shinokubo H. Oshima K. Chem. Eur. J.  2002,  8:  1730 
  • 3e Baird MS. Nizovtsev AV. Bolesov IG. Tetrahedron  2002,  58:  1581 
  • 3f Hoffmann RW. Knopff O. Kusche A. Angew. Chem. Int. Ed.  2000,  39:  1462 
  • 4a Someya H. Ohmiya H. Yorimitsu H. Oshima K. Org. Lett.  2008,  10:  969 
  • 4b Someya H. Yorimitsu H. Oshima K. Tetrahedron Lett.  2009,  50:  3270 
  • Silver is an effective catalyst for the coupling reaction of alkyl Grignard reagent R¹MgX with alkyl halide R²MgX when the alkyl groups are the same (R¹ = R²), see:
  • 5a Kochi JK. J. Organomet. Chem.  2002,  653:  11 
  • 5b Tamura M. Kochi JK. Synthesis  1971,  303 
  • Silver-catalyzed oxidative homocoupling reactions of Grignard reagents have been reported, see:
  • 6a Nagano T. Hayashi T. Chem. Lett.  2005,  34:  1152 
  • 6b Tamura M. Kochi JK. Bull. Chem. Soc. Jpn.  1972,  45:  1120 
  • 7 Typical procedure for diallylation: The reaction of 1c is representative. Silver trifluoromethanesulfonate (3.2 mg, 0.0125 mmol) was placed in a 20-mL reaction flask. Et2O (2 mL) and substrate 1c (146 mg, 0.50 mmol) were added under argon at -10 ˚C. Allylmagnesium bromide (0.79 M in Et2O, 1.90 mL, 1.50 mmol) was then added to the reaction mixture at -10 ˚C. After stirring for 15 h at -10 ˚C, the reaction mixture was poured into saturated ammonium chloride (20 mL). The mixture was extracted with hexane (3 × 10 mL) and the combined organic layer was dried over Na2SO4 and concentrated. Silica gel column purification(hexane) of the crude product provided the corresponding diallylated product 2c (83%, 89.2 mg, 0.42 mmol). 4-Methyl-4-(2-phenylethyl)-1,6-heptadiene (2c): IR (neat): 3074, 2920, 1638, 1498, 1454, 996, 913, 743, 698 cm; ¹H NMR (CDCl3) δ = 0.93 (s, 3 H), 1.47-1.52 (m, 2 H), 2.02-2.10 (m, 4 H), 2.56 (dt, J = 4.5, 4.5 Hz, 2 H), 5.04-5.10 (m, 4 H), 5.79-5.90 (m, 2 H), 7.14-7.23 (m, 3 H), 7.24-7.32 (m, 2 H); ¹³C NMR (CDCl3): δ = 24.79, 30.35, 36.23, 41.76, 44.02, 117.43, 125.80, 128.53, 128.54, 135.29, 143.53; Anal. Calcd for C16H22: C, 89.65; H, 10.35. Found: C, 89.51; H, 10.07
  • Organoargentate complexes are rarely reported, see:
  • 8a Schmidbaur H. Bayler A. The Chemistry of Organic Derivatives of Gold and Silver   Patai S. Rappoport Z. Wiley; New York: 1999.  Chap. 7.
  • 8b Noltes JG. van Koten G. In Comprehensive Organometallic Chemistry II   Vol. 3:  Wardell JL. Pergamon; Oxford: 1995.  Chap. 2.
  • 8c Rijs NJ. O’Hair RAJ. Organometallics  2009,  28:  2684 ; and references cited therein
  • 8d Nakanishi W. Yamanaka M. Nakamura E. J. Am. Chem. Soc.  2005,  127:  1446 ; and references cited therein
  • 8e Hwang C.-S. Power PP. J. Organomet. Chem.  1999,  589:  234 
  • 9 Triethylaluminum is known to react with α,α-dichloro-toluene to yield 3-phenylpentane via a carbocation intermediate, see: Miller DB. J. Org. Chem.  1966,  31:  908 
  • 11a Wender PA. Chem. Rev.  1996,  96:  1 
  • 11b Wender PA. Miller BL. In Organic Synthesis: Theory and Applications   Vol. 2:  Hudlicky T. JAI Press; Greenwich CT: 1993.  p.27-66  
  • 13a Grubbs RH. Miller SJ. Fu GC. Acc. Chem. Res.  1995,  28:  446 
  • 13b Armstrong SK. J. Chem. Soc., Perkin Trans. 1  1998,  371 
10

Lithium dimethylcuprate reacted with gem-dihaloalkanes to yield the corresponding dimethylated compounds. However, the reactions proceeded through halogen-copper exchange, not through sequential nucleophilic methylation reactions. See reference 2.

12

Procedure for Ag-catalyzed sequential allylation/benzylation of gem- dibromoalkane: Silver trifluoromethanesulfonate (3.2 mg, 0.0125 mmol) was placed in a 20-mL reaction flask. Et2O (2 mL) and substrate 1d (143 mg, 0.50 mmol) were added under argon at -30 ˚C. Allylmagnesium bromide (0.76 M in Et2O, 0.99 mL, 0.75 mmol) was then added to the reaction mixture at -30 ˚C. After stirring for 1 h at -30 ˚C, benzylmagnesium bromide (1.02 M in Et2O, 0.74 mL, 0.75 mmol) was added to the reaction mixture at -30 ˚C. After stirring for 2 h at room temperature, the reaction mixture was poured into a saturated ammonium chloride (20 mL) and extracted with hexane (3 × 10 mL). The combined organic layer was dried over Na2SO4 and concentrated. Silica gel column purification(hexane) of the crude product provided the corresponding product 6 (66%, 85.0 mg, 0.33 mmol).
4-Methyl-4-(phenylmethyl)-1-undecene (6): IR (neat): 3029, 2929, 2855, 1638, 1466, 1377, 911, 734, 701 cm; ¹H NMR (CDCl3): δ = 0.81 (s, 3 H), 0.89 (t, J = 7.0 Hz, 3 H), 1.10-1.38 (m, 12 H), 1.98 (dddt, J = 7.5, 7.0, 3.5, 1.5 Hz, 2 H), 2.49-2.56 (m, 2 H), 5.00-5.09 (m, 2 H), 5.86 (ddt, J = 8.5, 5.0, 7.5 Hz, 1 H), 7.10-7.16 (m, 2 H), 7.17-7.22 (m, 1 H), 7.23-7.28 (m, 2 H); ¹³C NMR (CDCl3): δ = 14.34, 22.91, 23.87, 24.79, 29.64, 30.66, 32.15, 37.09, 39.06, 43.85, 46.09, 117.24, 125.96, 127.86, 130.91, 135.78, 139.44; Anal. Calcd for C19H30: C, 88.30; H, 11.70. Found: C, 88.19; H, 11.95.