Subscribe to RSS
DOI: 10.1055/s-0029-1219150
A Simple, Advantageous Synthesis of 5-Substituted 1H-Tetrazoles [¹]
Publication History
Publication Date:
22 December 2009 (online)
Abstract
An advantageous synthesis of 5-substituted 1H-tetrazoles has been developed by treatment of organic nitriles with NaN3 in the presence of iodine or the heterogeneous catalyst, silica-supported sodium hydrogen sulfate (NaHSO4˙SiO2).
Key words
5-substitued 1H-tetrazole - organic nitrile - NaN3 - NaHSO4˙SiO2 - [3+2] cycloaddition - heterogeneous conditions
Part 189 in the series ‘Studies on novel synthetic methodologies’.
-
2a
Singh H.Chala S.Kapoor VK.Paul D.Malhotra RK. Prog. Med. Chem. 1980, 17: 151 -
2b
Butler RN. In Comprehensive Heterocyclic Chemistry Vol. 4:Katritzky AR.Rees CW.Scriven EFV. Pergamon; Oxford: 1996. -
2c
Jursic BS.LeBlanc BW.
J. Heterocycl. Chem. 1998, 35: 405 -
2d
Ostrovskii VA.Pevzner MS.Kofmna TP.Shcherbinin MB.Tselinskii IV. Targets in Heterocyclic Systems Vol. 3: Societa Chimica Italiana; Rome: 1999. p.467-526 -
2e
Hert RJ. Bioorg. Med. Chem. 2002, 10: 3379 - 3
Moderhack D. J. Prakt. Chem./Chem.-Ztg. 1988, 340: 687 -
4a
Dunica JV.Pierce ME.Santella JB. J. Org. Chem. 1991, 56: 2395 -
4b
Wittenberger SJ. Org. Prep. Proced. Int. 1994, 26: 499 -
4c
Kumar A.Narayanan R.Shechter H. J. Org. Chem. 1996, 61: 4462 -
4d
Koguro K.Oga T.Mitsui S.Orita R. Synthesis 1998, 910 -
4e
Curran DP.Hadida S.Kim SY. Tetrahedron 1999, 55: 8997 -
5a
Demko ZP.Sharpless KB. J. Org. Chem. 2001, 66: 7945 -
5b
Demko ZP.Sharpless KB. Org. Lett. 2002, 4: 2525 -
5c
Himo F.Demko ZP.Noodleman L.Sharpless KB. J. Am. Chem. Soc. 2003, 125: 9983 -
6a
Amantini D.Beleggia R.Fringuelli F.Pizzo F.Vaccaro L. J. Org. Chem. 2004, 69: 2896 -
6b
Kantam ML.Kumar KBS.Raja KP. J. Mol. Catal. A: Chem. 2006, 247: 186 -
7a
Das B.Satyalakshmi G.Suneel K. Tetrahedron Lett. 2009, 50: 2770 -
7b
Das B.Balasubramanyam P.Krishnaiah M.Veeranjaneyulu B.Reddy GC. J. Org. Chem. 2009, 74: 4393 -
7c
Das B.Damodar K.Bhunia N. J. Org. Chem. 2009, 74: 5607 - 8
Breton GW. J. Org. Chem. 1997, 62: 8952 -
9a
Ahn S.Reddy JP.Kariuki BM.Chatarjee S.Ranganathan A.Pedireddy VR.Rao CNR.Harris KDM. Chem. Eur. J. 2005, 11: 2433 -
9b
Devender T.Bharathi DV.Manikyamba P. Indian J. Chem., Sect. A 2008, 47: 863 - 10
La Bourdonnec B.Meulon E.Yous S.Goossens J.-F.Houssin R.Henichart J.-P. J. Med. Chem. 2000, 43: 2685 - 11
Matthews DP.Green JE.Shuker AJ. J. Comb. Chem. 2000, 2: 19 - 12
Nishiyama K.Yamaguchi T. Synthesis 1988, 106
References and Notes
Part 189 in the series ‘Studies on novel synthetic methodologies’.
13
Typical experimental
procedure using NaHSO
4
˙SiO
2
: To a mixture of benzonitrile (2.0 mmol)
and NaN3 (3.0 mmol) in DMF (5 mL), NaHSO4˙SiO2 (0.09
g) was added. The mixture was stirred at 120 ˚C
for 10 h until the reaction was complete (reaction monitored
by TLC). The catalyst was removed by filtration and washed with
EtOAc (2 × 5 mL). The filtrate
was treated with EtOAc (30 mL) and 4 M HCl (20 mL) and
stirred vigorously. The organic layer was separated and the aqueous
layer was extracted with EtOAc (2 × 10
mL). The combined organic extracts were washed with H2O
(2 × 10 mL) and concentrated.
The crude product was subjected to column chromatography (silica
gel; hexane-EtOAc) to obtain pure 5-phenyl tetrazole (91%).
Typical experimental procedure using
I
2
: To a mixture of benzonitrile
(2.0 mmol) and NaN3 (3.0 mmol) in DMF (5 mL),
I2 (0.03 g) was added and the mixture was stirred at 120 ˚C.
After completion of the reaction (10 h), the mixture was treated
with EtOAc (30 mL) and 4 M HCl (20 mL) and stirred
vigorously. The organic layer was separated and the aqueous layer
was extracted with EtOAc (2 × 10 mL).
The combined organic portion was washed with saturated sodium thiosulfate
solution (2 × 10 mL) and H2O (2 × 10 mL)
and subsequently concentrated. The residue was purified by column
chromatography (silica gel; hexane-EtOAc) to afford pure
5-phenyl tetrazole (89%).
Spectroscopic data of
representative novel compounds: 2c: IR:
3442, 1598, 1563,1484, 1411 cm-¹; ¹H
NMR (200 MHz, DMSO-d
6): δ = 7.91
(1 H, br s), 7.84 (1 H, d, J = 8.0
Hz), 7.40 (1 H, t, J = 8.0
Hz), 7.30 (1 H, d, J = 8.0
Hz), 2.45 (3 H, s); ¹³C NMR
(50 MHz, DMSO-d
6): δ = 155.7,
138.6, 131.1, 128.2, 127.4, 123.8, 20.2; MS (ESI): m/z = 161 [M + H]+; HRMS
(ESI): m/z [M + H]+ calcd
for C8H9N4: 161.0827; found: 161.0830. 2d: IR: 3477, 1663, 1603, 1515, 1317 cm-¹; ¹H
NMR (200 MHz, DMSO-d
6): δ = 7.30
(2 H, d, J = 8.0 Hz),
6.62 (2 H, d, J = 8.0
Hz), 5.43 (2 H, br s); ¹³C
NMR (50 MHz, DMSO-d
6): δ = 157.6,
151.2, 132.1, 119.0, 112.2; MS (ESI): m/z = 162 [M + H]+;
Anal. Calcd for C7H7N5: C, 52.17;
H, 4.35; N, 3.11. Found: C, 52.28; H, 4.29; N, 3.17. 2h:
IR: 3507, 1709, 1564, 1431, 1286 cm-¹; ¹H
NMR (200 MHz, DMSO-d
6): δ = 8.20
(2 H, d, J = 8.0
Hz), 8.11 (2 H, d, J = 8.0 Hz),
3.91 (3 H, s); ¹³C NMR (50
MHz, DMSO-d
6):
δ = 155.8,
132.2, 131.2, 130.0, 129.1, 126.3, 51.4; MS (ESI): m/z = 205 [M + H]+;
HRMS (ESI): m/z [M + H]+ calcd
for C9H9N4O2: 205.0725;
found: 205.0735. 2k: IR: 3453, 1628, 1527,
1482 cm-¹; ¹H NMR
(200 MHz, DMSO-d
6): δ = 9.42 (1 H,
d, J = 8.0
Hz), 8.41 (1 H, d, J = 8.0 Hz),
7.56 (1 H, t, J = 8.0
Hz); ¹³C NMR (50 MHz, DMSO-d
6): δ = 155.8, 147.1,
140.6, 131.0, 128.2, 127.1; MS (ESI): m/z = 182, 183 [M + H]+;
Anal. Calcd for C6H4ClN5: C, 39.67;
H, 2.20; N, 38.57. Found: C, 39.78; H, 2.14; N, 38.63. 2n: IR: 3426, 1648, 1237 cm-¹; ¹H
NMR (200 MHz, DMSO-d
6): δ = 10.46 (1 H,
br s), 4.50 (2 H, q, J = 7.0
Hz), 1.42 (3 H, t, J = 7.0 Hz); ¹³C
NMR (50 MHz, DMSO-d
6): δ = 157.1,
151.6, 54.6, 14.8; MS (ESI): m/z = 143 [M + H]+;
Anal. Calcd for C4H6N4O2:
C, 33.80; H, 4.23; N, 39.44. Found: C, 33.91; H, 4.28; N, 39.37.