Synthesis 2010(10): 1678-1686  
DOI: 10.1055/s-0029-1218701
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

One-Pot Friedländer Quinoline Synthesis: Scope and Limitations

An-Hu Li*, David J. Beard, Heather Coate, Ayako Honda, Mridula Kadalbajoo, Andrew Kleinberg, Radoslaw Laufer, Kristen M. Mulvihill, Anthony Nigro, Pawan Rastogi, Dan Sherman, Kam W. Siu, Arno G. Steinig, Ti Wang, Doug Werner, Andrew P. Crew, Mark J. Mulvihill
Department of Cancer Chemistry, OSI Pharmaceuticals, Inc., 1 Bioscience Park Drive, Farmingdale, NY 11735, USA
Fax: +1(631)8455671; e-Mail: ali@osip.com;
Weitere Informationen

Publikationsverlauf

Received 4 January 2010
Publikationsdatum:
12. März 2010 (online)

Abstract

A highly effective one-pot Friedländer quinoline synthesis from o-nitroarylcarbaldehydes and ketones or aldehydes was developed and the scope and limitations of the method were examined. The o-nitroarylcarbaldehydes were reduced to o-aminoarylcarbaldehydes with iron in the presence of a catalytic amount of aqueous hydrochloric acid; the amino compounds were then condensed in situ with ketones or aldehydes to form mono- or disubstituted quinolines, respectively, in good-to-excellent yields (58-100%).

    References

  • For recent reviews, see:
  • 1a Stocks PA. Raynes KJ. Ward SA. In Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery (Infectious Disease)   Rosenthal PJ. Humana; Totawa / NJ: 2001.  Chap. 13. p.235 
  • 1b Waters NC. Dow GS. Kozar MP. Expert Opin. Ther. Pat.  2004,  14:  1125 
  • 1c Fitch CD. Life Sci.  2004,  74:  1957 
  • 1d Olliaro PL. Taylor WRJ. J. Exp. Biol.  2003,  206:  3753 
  • 1e Michael JP. Nat. Prod. Rep.  2004,  21:  650 
  • 2a Tsou H.-R. Overbeek-Klumpers EG. Hallett WA. Reich MF. Floyd MB. Johnson BD. Michalak RS. Nilakantan R. Discafani C. Golas J. Rabindran SK. Shen R. Shi X. Wang Y.-F. Upeslacis J. Wissner A. J. Med. Chem.  2005,  48:  1107 
  • For a review, see:
  • 2b Boschelli DH. Curr. Top. Med. Chem. (Sharjah, United Arab Emirates)  2002,  2:  1051 
  • 2c Kubo K. Ohyama S.-i. Shimizu T. Takami A. Murooka H. Nishitoba T. Kato S. Yagi M. Kobayashi Y. Iinuma N. Isoe T. Nakamura K. Iijima H. Osawa T. Izawa T. Bioorg. Med. Chem.  2003,  11:  5117 
  • 2d Golas JM. Arndt K. Etienne C. Lucas J. Nardin D. Gibbons J. Frost P. Ye F. Boschelli DH. Boschelli F. Cancer Res.  2003,  63:  375 
  • 2e Wu J. Li W. Craddock BP. Foreman KW. Mulvihill MJ. Ji Q.-s. Miller WT. Hubbard SR. EMBO J.  2008,  27:  1985 
  • 2f Mulvihill MJ. Ji Q.-S. Coate HR. Cooke A. Dong H. Feng L. Foreman K. Rosenfeld-Franklin M. Honda A. Mak G. Mulvihill KM. Nigro AI. O’Connor M. Pirrit C. Steinig AG. Siu K. Stolz KM. Sun Y. Tavares PAR. Yao Y. Gibson NW. Bioorg. Med. Chem.  2008,  16:  1359 
  • 2g Ji Q.-s. Mulvihill MJ. Rosenfeld-Franklin M. Cooke A. Feng L. Mak G. O’Connor M. Yao Y. Pirritt C. Buck E. Eyzaguirre A. Arnold LD. Gibson NW. Pachter JA. Mol. Cancer Ther.  2007,  6:  2158 
  • 2h Mulvihill MJ. Cooke A. Rosenfeld-Franklin M. Buck E. Foreman K. Landfair D. O’Connor M. Pirritt C. Sun Y. Yao Y. Arnold LD. Gibson NW. Ji Q.-s. Future Med. Chem.  2009,  1:  1153 
  • 3a For a review, see: Cheng C.-C. Yan S.-J. Org. React. (N. Y.)  1982,  28:  37 
  • For a recent paper on the mechanism, see:
  • 3b Muchowski JM. Maddox ML. Can. J. Chem.  2004,  82:  461 
  • 4a McNaughton BR. Miller BL. Org. Lett.  2003,  5:  4257 
  • 4b Eckert H. Angew. Chem.  1981,  93:  216 
  • 4c Motokura K. Mizugaki T. Ebitani K. Kaneda K. Tetrahedron Lett.  2004,  45:  6029 
  • 4d Cho CS. Kim BT. Choi H.-J. Kim T.-J. Shim SC. Tetrahedron  2003,  59:  7997 
  • 4e Martinez R. Ramon DJ. Yus M. Eur. J. Org. Chem.  2007,  1599 
  • 4f Cho CS. Ren WX. Shim SC. Tetrahedron Lett.  2006,  47:  6781 
  • 4g Cho CS. Ren WX. Shim SC. Bull. Korean Chem. Soc.  2005,  26:  1286 
  • 5 Li A.-H. Ahmed E. Chen X. Cox M. Crew AP. Dong H.-Q. Jin M. Ma L. Panicker B. Siu KW. Steinig AG. Stolz KM. Tavares PAR. Volk B. Weng Q. Werner D. Mulvihill MJ. Org. Biomol. Chem.  2007,  5:  61 
  • 6 Arnold LD, Cesario C, Coate H, Crew AP, Dong H, Foreman K, Honda A, Laufer R, Li A.-H, Mulvihill KM, Mulvihill MJ, Nigro A, Panicker B, Steinig AG, Sun Y, Weng Q, Werner DS, Wyle MJ, and Zhang T. inventors; WO 2005097800  .  , ; Chem. Abstr. 2005, 142, 405928
  • 7 The Hammett substituent constant (σ value) for the para-Me2N group is -0.205, suggesting that it has an electron-donating effect. See: Hammett LP. J. Am. Chem. Soc.  1937,  59:  96 
  • 8 Longer condensation times have also been reported for the reaction of the intermediate 1-aminonaphthalene-2-carboxaldehyde with 1,3-diacetylbenzene (31 h) and 2,6-diacetylpyridine (17 h) under essentially the same reaction conditions (KOH in refluxing EtOH); see: Riesgo EC. Jin X. Thummel RP. J. Org. Chem.  1996,  61 :  3017 
  • 9a Fournet A. Vagneur B. Richomme P. Bruneton J. Can. J. Chem.  1989,  67:  2116 
  • 9b Fournet A. Hocquemiller R. Roblot F. Cavé A. Richomme P. Bruneton J. J. Nat. Prod.  1993,  56:  1547 
  • 10 Caron S. Desfossés S. Dionne R. Théberge N. Burnell RH. J. Nat. Prod.  1993,  56:  138 
  • 11 The same results were obtained in the 1,8-naphthyridine system when NaOH was used as the base. See: Dormer PG. Eng KK. Farr RN. Humphrey GR. McWilliams GC. Reider PJ. Sager JW. Volante RP. J. Org. Chem.  2003,  68:  467