Abstract
Palladium-catalyzed Suzuki cross-coupling reactions of an indole
vinyl triflate provides an efficient pathway for the synthesis of
a diverse class of novel hymenialdisine analogues.
Key words
hymenialdisine analogues - cross-coupling - silica
gel - palladium - heterocycles
References and Notes
1a
Bishop AC.
Ubersax JA.
Petsch DT.
Matheos
DP.
Gray NS.
Blethrow J.
Shimizu E.
Tsien JZ.
Schultz PG.
Rose MD.
Wood JL.
Morgan DO.
Shokat KM.
Nature
2000,
407:
395
1b
Gray NS.
Science
1998,
281:
533
2
Cohen P.
Nat.
Rev. Drug Discovery
2002,
1:
309
3
Bogoyevitch MA.
Fairlie DP.
Drug Discovery Today
2007,
12:
622
4
Huwe A.
Mazitschek R.
Giannis A.
Angew. Chem.
Int. Ed.
2003,
42:
2122
5a
Wan Y.
Hur W.
Cho CY.
Liu Y.
Adrin FJ.
Lozach O.
Bach S.
Mayer T.
Fabbro D.
Meijer L.
Gray NS.
Chem.
Biol.
2004,
11:
247
5b
Sharma V.
Lansdell TA.
Jin G.
Tepe JJ.
J. Med. Chem.
2004,
47:
3700
6
Meijer L.
Thunnissen A.-MWH.
White AW.
Garnier M.
Nikolic M.
Tsai L.-H.
Walter J.
Cleverley KE.
Salinas PC.
Wu Y.-Z.
Biernat J.
Mandelkow E.-M.
Kim S.-H.
Pettit GR.
Chem.
Biol.
2000,
7:
51
7
Mohammed R.
Peng J.
Kelly M.
Hamann MT.
J. Nat. Prod.
2006,
69:
1739
8
Albizati KF.
Faulkner DJ.
J. Org. Chem.
1985,
50:
4163
9a
Kumar K.
Michalik D.
Castro IG.
Tillack A.
Zapf A.
Arlt M.
Heinrich T.
Böttcher H.
Beller M.
Chem. Eur. J.
2004,
10:
746
9b
Michalik D.
Kumar K.
Zapf A.
Tillack A.
Arlt M.
Heinrich T.
Beller M.
Tetrahedron
Lett.
2004,
45:
2057
9c
Tewari A.
Hein M.
Zapf A.
Beller M.
Tetrahedron Lett.
2004,
45:
7703
9d
Khedkar V.
Tillack A.
Michalik M.
Beller M.
Tetrahedron
2005,
61:
7622
9e
Neumann H.
Strübing D.
Lalk M.
Klaus S.
Hübner S.
Spannenberg A.
Lindequist U.
Beller M.
Org. Biomol. Chem.
2006,
4:
1365
For recent publications, see:
10a
Gelalcha FG.
Anilkumar G.
Tse MK.
Brückner A.
Beller M.
Chem. Eur. J.
2008,
14:
7687
10b
Bitterlich B.
Schröder K.
Tse MK.
Beller M.
Eur. J. Org. Chem.
2008,
4867
10c
Gelalcha FG.
Bitterlich B.
Anilkumar G.
Tse MK.
Beller M.
Angew. Chem.
2007,
46:
7293
10d
Anilkumar G.
Bitterlich B.
Gelalcha FG.
Tse MK.
Beller M.
Chem.
Commun.
2007,
289
10e
Tse MK.
Bhor S.
Klawonn M.
Anilkumar G.
Jiao H.
Döbler C.
Spannenberg A.
Mägerlein W.
Hugl H.
Beller M.
Chem. Eur. J.
2006,
12:
1855
10f
Tse MK.
Bhor S.
Klawonn M.
Anilkumar G.
Jiao H.
Spannenberg A.
Döbler C.
Mägerlein W.
Hugl H.
Beller M.
Chem. Eur. J.
2006,
12:
1875
10g
Tse MK.
Döbler C.
Bhor S.
Klawonn M.
Mägerlein W.
Hugl H.
Beller M.
Angew.
Chem. Int. Ed.
2004,
43:
5255
11a
Mangu N.
Kaiser HM.
Kar A.
Spannenberg A.
Beller M.
Tse MK.
Tetrahedron
2008,
64:
7171
11b
Kaiser HM.
Lo WF.
Riahi AM.
Spannenberg A.
Beller M.
Tse MK.
Org.
Lett.
2006,
8:
5761
11c
Kaiser HM.
Zenz I.
Lo WF.
Spannenberg A.
Schroder K.
Jiao H.
Gordes D.
Beller M.
Tse MK.
J.
Org. Chem.
2007,
72:
8847
11d The use of these compounds
as tools in activity-based profiling is currently ongoing
12a
Nakamura I.
Yamamoto Y.
Chem.
Rev.
2004,
104:
2127
12b
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
13
Tessier PE.
Nguyen N.
Clay MD.
Fallis AG.
Org. Lett.
2005,
7:
767
14
Stang PJ.
Fisk TE.
Synthesis
1979,
438
15 Decomposition of compound 8 was observed on storage (˜5
d).
16a
Chacun-Lefèvre L.
Joseph B.
Mérour J.-Y.
Tetrahedron
2000,
56:
4491
16b
Perron J.
Joseph B.
Mérour J.-Y.
Tetrahedron
2003,
59:
6659
16c
Chacun-Lefèvre L.
Joseph B.
Mérour J.-Y.
Synlett
2001,
848 ; Note:
Although this reference reports a similar kind of approach, it suffers
with the unprotected NH-CO-C-NH backbone,
which is critical for kinase inhibition
17
General procedure
for the Suzuki coupling of 8 with aryl boronic acids 9a-k :
To a stirring mixture of 8 (600 mg, 1.1 mmol)
in toluene (3 mL) and absolute EtOH (3 mL) under an argon atmosphere,
Pd(PPh3 )4 (12.6 mg, 0.011 mmol), boronic acid
(1.2 mmol) and 2 M aq Na2 CO3 solution (0.55 mL)
were added. The mixture was heated at 70 ˚C overnight (˜12-16
h), then the solvent was removed under reduced pressure and the
mixture was extracted with CH2 Cl2 (2 × 20 mL),
the combined organic extracts were washed with brine (25 mL), dried
over MgSO4 and concentrated under reduced pressure to
give the crude product, which was used for the deprotection step
without further purification. The above crude product was dissolved
in anhydrous CH2 Cl2 (50 mL) and activated
silica (2.46 g, 0.040-0.063 mm) was added. The solvent
was removed under reduced pressure and the solid mixture was heated
under argon at 100 ˚C for 1 h. Purification by
column chromatography (silica gel 70-230 mesh, hexane-EtOAc,
6:4) yielded pure compounds 9a -k .
18
X-ray crystal
data for 9d : Empirical formula: C19 H16 N2 O2 ; M
r = 304.34;
monoclinic; space group: P 21 /c ; cell dimensions: a = 9.3756
(3), b = 6.5948
(2), c = 25.3990
(8) Å, β = 100.003
(2)˚; V = 1546.55
(8) ų ; Z = 4; ρ
calcd = 1.307 g˙cm-³ ;
22763 reflections measured, 3292 independent reflections, of which
2312 were observed [I >2σ (I )],
final R indices [I >2σ (I )]: R
1 = 0.0306, wR
2 = 0.0686, R indices (all data): R
1 = 0.0486, wR
2 = 0.0715,
217 refined parameters. Data were collected on a STOE IPDS II diffractometer
using graphite-monochromated MoKα radiation. The structure was
solved by direct methods (SHELXS-97)¹9 and refined by
full-matrix least-squares techniques on F
² (SHELXL-97).¹9 XP
(Bruker AXS) was used for graphical represen-tation. CCDC 748111
contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge Crystallo-graphic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
19
Sheldrick GM.
Acta
Crystallogr., Sect. A
2008,
64:
112