Subscribe to RSS
DOI: 10.1055/s-0029-1218542
The Design of Chiral Double Hydrogen Bonding Networks and Their Applications to Catalytic Asymmetric Carbon-Carbon and Carbon-Oxygen Bond-Forming Reactions
Publication History
Publication Date:
09 December 2009 (online)
Abstract
This review focuses on the applications of multicenter organocatalysts, which can form chiral hydrogen bonded networks. The high tunabilities of these catalysts in terms of their active sites, chiral spacers, and tolerated reaction conditions have been used advantageously in applications to various classes of catalytic asymmetric carbon-carbon and carbon-oxygen bond forming reactions. The high stereoselectivities of these reactions are attributed to the chemoselective dual activation of both the nucleophile and electrophile reacting partners in asymmetric space. The key requirements for the cooperative effects of weak noncovalent-bonding interactions are discussed.
1 Introduction
2 General Concept for the Design of Chiral Hydrogen Bonding Networks
3 Bis-thiourea-type Homo-bifunctional Organocatalysts
3.1 Enantioselective Morita-Baylis-Hillman Reaction
4 Guanidinium-Thiourea Hetero-multifunctional Organocatalysts
4.1 Catalytic Diastereo- and Enantioselective Nitroaldol Reaction of Prochiral Aldehydes
4.2 Catalytic Diastereoselective Nitroaldol Reaction of
α-Chiral
Aldehydes
4.3 Catalytic Asymmetric Nitroaldol Reaction of α-Keto Esters
4.4 Catalytic Asymmetric Nitro-Mannich-type Reaction
4.5 Catalytic Asymmetric Mannich-type Reaction with Malonates
5 Guanidinium-Urea Hetero-multifunctional Organocatalysts
5.1 Catalytic Asymmetric Epoxidation with Hydrogen Peroxide
6 Summary
Key words
asymmetric synthesis - catalysis - guanidinium - thiourea - urea
-
1a
Silverman RB. The Organic Chemistry of Enzyme-Catalyzed Reactions Academic; San Diego / CA: 2002. -
1b
Duagas H. Bioorganic Chemistry Springer; New York: 1999. - For reviews, see:
-
2a
Shibasaki M.Matsunaga S.Kumagai N. Synlett 2008, 1583 -
2b
Shibasaki M.Kanai M. Org. Biomol. Chem. 2007, 5: 2027 -
2c
Shibasaki M.Kanai M.Matsunaga S. Aldrichimica Acta 2006, 39: 31 -
2d
Shibasaki M.Matsunaga S. Chem. Soc. Rev. 2006, 35: 269 -
2e
Kanai M.Kato N.Ichikawa E.Shibasaki M. Synlett 2005, 1491 -
2f
Shibasaki M.Yoshikawa N. Chem. Rev. 2002, 102: 2187 -
2g
Shibasaki M.Sasai H.Arai T. Angew. Chem. Int. Ed. Engl. 1997, 36: 1236 -
3a
Lewis Acids in Organic Synthesis
Vols.
1 and 2:
Yamamoto H. Wiley; New York: 2000. -
3b
Comprehensive
Asymmetric Catalysis
Vols. 1-3:
Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 1999. -
4a
Jeffrey G.Saenger W. Hydrogen Bonding in Biological Structures Springer; Berlin: 1991. -
4b
Desiraju GR.Steiner T. The Weak Hydrogen Bond in Structural Chemistry and Biology Oxford University Press; Oxford: 1999. -
4c
Williams DH.Westwell MS. Chem. Soc. Rev. 1998, 27: 57 - For selected general reviews on asymmetric organocatalysis, see:
-
5a
Berkessel A.Gröger H. Asymmetric Organocatalysis Wiley-VCH; Weinheim: 2005. -
5b
Enantioselective
Organocatalysis: Reaction and Experimental Procedures
Dalko PI. Wiley and Sons; New York: 2007. -
5c
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2001, 40: 3726 -
5d
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138 -
5e
MacMillan DWC. Nature (London) 2008, 455: 304 - For selected reviews on asymmetric catalysis by hydrogen bond donors, see:
-
6a
Doyle AG.Jacobsen EN. Chem. Rev. 2007, 107: 5713 -
6b
Takemoto Y.Miyabe H. Chimia 2007, 61: 269 -
6c
Connon SJ. Chem. Eur. J. 2006, 12: 5418 -
6d
Taylor MS.Jacobsen EN. Angew. Chem. Int. Ed. 2006, 45: 1520 -
6e
Akiyama T.Itoh J.Fuchibe K. Adv. Synth. Catal. 2006, 348: 999 -
6f
Takemoto Y. Org. Biomol. Chem. 2005, 3: 4299 -
6g
Schreiner PR. Chem. Soc. Rev. 2003, 32: 289 - For pioneering work using chiral urea/thiourea catalysts by Jacobsen’s group, see:
-
7a
Sigman MS.Jacobsen EN.
J. Am. Chem. Soc. 1998, 120: 4901 - For a recent mechanistic study, see:
-
7b
Zuend SJ.Jacobsen EN.
J. Am. Chem. Soc. 2007, 129: 15872 - For counterion catalysis by Jacobsen’s group, see:
-
7c
Raheem I.Thiara PS.Peterson EA.Jacobsen EN. J. Am. Chem. Soc. 2007, 129: 13404 -
7d
Reisman SE.Doyle AG.Jacobsen EN. J. Am. Chem. Soc. 2008, 130: 7198 - For other works by Jacobsen’s group:
-
7e
See also ref. 6; and references cited therein
- For Takemoto’s original work, see:
-
8a
Okino T.Hoashi Y.Takemoto Y. J. Am. Chem. Soc. 2003, 125: 12672 - For other works by Takemoto’s group, see:
-
8b
Miyabe M.Takemoto Y. Bull. Chem. Soc. Jpn. 2008, 81: 785 -
8c
See also ref. 6
- For reviews on chiral guanidine catalysts, see:
-
10a
Ishikawa T.Isobe T. Chem. Eur. J. 2002, 8: 552 -
10b
Ishikawa T.Kumamoto T. Synthesis 2006, 737 -
10c
Leow D.Tan C.-H. Chem. Asian J. 2009, 4: 488 - For our work, see:
-
11a
Nagasawa K.Georgieva A.Takahashi H.Nakata T. Tetrahedron 2000, 56: 187 -
11b
Nagasawa K.G eorgieva A.Takahashi H.Nakata T. Tetrahedron 2001, 57: 8959 -
11c
Kita T.Georgieva A.Hashimoto Y.Nakata T.Nagasawa K. Angew. Chem. Int. Ed. 2002, 41: 2832 -
11d
Kita T.Shin B.Hashimoto Y.Nagasawa K. Heterocycles 2007, 73: 241 - For representative examples, see:
-
13a
Schuster T.Bauch M.Dürner D.Göbel MW. Org. Lett. 2000, 2: 179 -
13b
Schuster T.Kurz M.Göbel MW. J. Org. Chem. 2000, 65: 1697 - 14
Yoon TP.Jacobsen EN. Science (Washington, DC) 2003, 299: 1691 -
15a
Sohtome Y.Tanatani A.Hashimoto Y.Nagasawa K. Tetrahedron Lett. 2004, 45: 5589 -
15b
Sohtome Y.Takemura N.Takagi R.Hashimoto Y.Nagasawa K. Tetrahedron 2008, 64: 9423 -
15c
Sohtome Y.Hashimoto Y.Nagasawa K. Adv. Synth. Catal. 2005, 347: 1643 -
15d
Sohtome Y.Takemura N.Iguchi T.Hashimoto Y.Nagasawa K. Synlett 2006, 144 -
15e
Sohtome Y.Hashimoto Y.Nagasawa K. Eur. J. Org. Chem. 2006, 2894 -
15f
Sohtome Y.Takemura N.Takada K.Takagi R.Iguchi T.Nagasawa K. Chem. Asian J. 2007, 2: 1150 -
15g
Takada K.Takemura N.Cho K.Sohtome Y.Nagasawa K. Tetrahedron Lett. 2008, 49: 1623 -
15h
Shin B.Tanaka S.Kita T.Hashimoto Y.Nagasawa K. Heterocycles 2008, 76: 801 -
15i
Takada K.Nagasawa K. Adv. Synth. Catal. 2009, 351: 345 -
15j
Takada K.Tanaka S.Nagasawa K. Synlett 2009, 1643 -
15k
Tanaka S.Nagasawa K. Synlett 2009, 667 -
16a
Nagasawa K.Georgieva A.Koshino H.Nakata T.Kita T.Hashimoto Y. Org. Lett. 2002, 4: 177 -
16b
Ishiwata T.Hino T.Koshino H.Hashimoto Y.Nakata T.Nagasawa K. Org. Lett. 2002, 4: 2921 -
16c
Nagasawa K.Hashimoto Y. Chem. Rec. 2003, 3: 201 -
16d
Shimokawa J.Shirai K.Tanatani A.Hashimoto Y.Nagasawa K. Angew. Chem. Int. Ed. 2004, 43: 1559 -
16e
Shimokawa J.Ishiwata T.Shirai K.Koshino H.Tanatani A.Nakata T.Hashimoto Y.Nagasawa K. Chem. Eur. J. 2005, 11: 6878 -
16f
Nagasawa K.Shimokawa J. J. Synth. Org. Chem. Jpn. 2006, 64: 539 -
16g
Iwamoto O.Koshino H.Hashizume D.Nagasawa K. Angew. Chem. Int. Ed. 2007, 46: 8625 -
16h
Iwamoto O.Shinohara R.Nagasawa K. Chem. Asian J. 2009, 4: 277 - 17
Sohtome Y.Tanatani A.Hashimoto Y.Nagasawa K. Chem. Pharm. Bull. 2004, 52: 477 - Curran apparently was the first to use urea derivatives for general acid-promoted reactions, see:
-
18a
Curran DP.Kuo LH. J. Org. Chem. 1994, 59: 3259 -
18b
Curran DP.Kuo LH. Tetrahedron Lett. 1995, 36: 6647 -
18c
Wilcox CS.Kim E.Romano D.Kuo LH.Burt AL.Curran DP. Tetrahedron 1995, 51: 621 - 19
Hedstrom L. Chem. Rev. 2002, 102: 4501 -
20a
Morita K.Suzuki Z.Hirose H. Bull. Chem. Soc. Jpn. 1968, 41: 2815 -
20b
Baylis AB, andHillman MED. inventors; DE 2155113. ; Chem. Abstr. 1972, 77, 34174q - For general reviews, see:
-
21a
Masson G.Housseman C.Zhu J. Angew. Chem. Int. Ed. 2007, 46: 4614 -
21b
Basavaiah D.Rao KV.Reddy RJ. Chem. Soc. Rev. 2007, 36: 1581 -
21c
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 -
21d
Iwabuchi Y.Hatakeyama S. J. Synth. Org. Chem., Jpn. 2002, 60: 2 -
21e
Langer P. Angew. Chem. Int. Ed. 2000, 39: 3049 -
21f
Ciganek E. In Organic Reactions Vol. 51:Paquette LA. Wiley; New York: 1977. p.201 - For pioneering work on asymmetric MBH reactions by Hatakeyama’s group, see:
-
22a
Iwabuchi Y.Nakatani M.Yokoyama N.Hatakeyama S. J. Am. Chem. Soc. 1999, 121: 10219 -
22b
Iwabuchi Y.Furukawa M.Esumi T.Hatakeyama S. Chem. Commun. (Cambridge) 2001, 2030 -
22c
Iwabuchi Y.Sugihara T.Esumi T.Hatakeyama S. Tetrahedron Lett. 2001, 42: 7867 -
22d
Nakano A.Takahashi K.Ishihara J.Hatakeyama S. Org. Lett. 2006, 8: 5357 - For representative chiral Lewis base catalysts, see:
-
23a
Oishi T.Oguri H.Hirama M. Tetrahedron: Asymmetry 1995, 6: 1241 -
23b
Marko IE.Giles PR.Hindley NJ. Tetrahedron 1997, 53: 1015 -
23c
Barrett AGM.Cook AS.Kamimura A. Chem. Commun. 1998, 2533 -
23d
Imbriglio JE.Vasbinder MM.Miller SJ. Org. Lett. 2003, 5: 3741 -
23e
Vasbinder MM.Imbriglio JE.Miller SJ. Tetrahedron 2006, 62: 11450 -
23f
Aroyan CE.Vasbinder MM.Miller SJ. Org. Lett. 2005, 7: 3849 -
23g
Tang H.Zhao G.Zhou Z.Zhou Q.Tang C. Tetrahedron Lett. 2006, 47: 5717 -
23h
Xu J.Guan Y.Yang S.Ng Y.Peh G.Tan C.-H. Chem. Asian J. 2006, 1: 724 - For other chiral Lewis base catalysts
-
23i
See also ref. 20; and references cited therein
- For chiral Brønsted acid and achiral Lewis base systems, see:
-
24a
Yamada YMA.Ikegami S. Tetrahedron Lett. 2000, 41: 2165 -
24b
McDougal NT.Schaus SE. J. Am. Chem. Soc. 2003, 125: 12094 -
24c
McDougal NT.Trevellini WL.Rodgen SA.Kliman LT.Schaus SE. Adv. Synth. Catal. 2004, 346: 1231 -
24d
Rodgen SA.Schaus SE. Angew. Chem. Int. Ed. 2006, 45: 4929 -
24e
See also ref. 15a
-
24f
See also ref. 15b. Recently improved bis-thiourea catalysts were reported by Berkessel and Shi’s groups, see:
-
24g
Berkessel A.Roland K.Neudöfl JM. Org. Lett. 2006, 8: 4195 -
24h
Shi M.Liu X.-G. Org. Lett. 2008, 10: 1043 - 25 For a review of solvent-free approaches,
see:
Walsh PJ.Li H.de Parrodi CA. Chem. Rev. 2007, 107: 2503 -
26a
Schreiner PR.Wittkopp A. Org. Lett. 2002, 4: 217 -
26b
Wittkopp A.Schreiner PR. Chem. Eur. J. 2003, 9: 407 - These results are not entirely novel; Connon and Maher also reported very similar results with the use of methyl acrylate and methyl vinyl ketone at almost the same time as our report, see:
-
27a
Maher DJ.Connon SJ. Tetrahedron Lett. 2004, 45: 1301 - For other works by Connon’s group:
-
27b
See also ref. 6, including their review
-
27c
Connon SJ. Synlett 2009, 354 - 28
Jones CES.Turega SM.Clarke ML.Philp D. Tetrahedron Lett. 2008, 49: 4666 - For mechanistic studies on the MBH reaction, see:
-
29a
Raheem IT.Jacobsen EN. Adv. Synth. Catal. 2005, 347: 1701 -
29b
Aggawal VK.Fulford SY.Lloyd-Jones GC. Angew. Chem. Int. Ed. 2005, 44: 1706 -
29c
Price KE.Broadwater SJ.Jung HM.McQuade DT. Org. Lett. 2005, 7: 147 -
29d
Price KE.Broadwater SJ.Walker BJ.McQuade DT. J. Org. Chem. 2005, 70: 3980 -
29e
Buskens P.Klankermayer J.Leitner W. J. Am. Chem. Soc. 2005, 127: 16762 - 30
Henry LCR. Hebd. Seances Acad. Sci. 1895, 120: 1265 -
31a
Palomo C.Oiarbide M.Laso A. Eur. J. Org. Chem. 2007, 2561 -
31b
Boruwa J.Gogoi N.Saikia PP.Barua NC. Tetrahedron: Asymmetry 2006, 17: 3315 -
31c
Palomo C.Oiarbide M.Mielgo A. Angew. Chem. Int. Ed. 2004, 43: 5442 -
31d
Ono N. The Nitro Group in Organic Synthesis Wiley-VCH; New York: 2001. - For syn-selective nitroaldol reactions, see:
-
32a
Sasai H.Tokunaga T.Watanabe S.Suzuki T.Itoh N.Shibasaki M. J. Org. Chem. 1995, 60: 7388 -
32b
Arai T.Watanabe M.Yanagisawa A. Org. Lett. 2007, 9: 3595 -
32c
Arai T.Takashita R.Endo Y.Watanabe M.Yanagisawa A. J. Org. Chem. 2008, 73: 4903 -
32d
Toussaint A.Pfaltz A. Eur. J. Org. Chem. 2008, 4591 - For anti-selective nitroaldol reactions, see:
-
32e
Uraguchi D.Sakaki S.Ooi T. J. Am. Chem. Soc. 2007, 129: 12392 -
32f
Nitabaru T.Kumagai N.Shibasaki M. Tetrahedron Lett. 2008, 49: 272 -
32g
Handa S.Nagawa K.Sohtome Y.Matsunaga S.Shibasaki M. Angew. Chem. Int. Ed. 2008, 47: 3230 - For the first report of an enantioselective nitroaldol reaction with nitromethane, see:
-
33a
Sasai H.Suzuki T.Arai S.Arai T.Shibasaki M. J. Am. Chem. Soc. 1992, 114: 4418 - For other works:
-
33b
See also ref. 31a; and references cited therein
-
33c
See also ref. 31b; and references cited therein
-
33d
See also ref. 31c; and references cited therein
-
34a
Tosaki S.Hara K.Gnanadesikan V.Morimoto H.Harada S.Sugita M.Yamagiwa N.Matsunaga S.Shibasaki M. J. Am. Chem. Soc. 2006, 128: 11776 -
34b
Hara K.Tosaki S.Gnanadesikan V.Morimoto H.Harada S.Sugita M.Yamagiwa N.Matsunaga S.Shibasaki M. Tetrahedron 2009, 65: 5030 - For reviews on asymmetric phase-transfer catalysts, see:
-
35a
Maruoka K.Ooi T. Chem. Rev. 2003, 103: 3013 -
35b
O’Donnell MJ. Acc. Chem. Res. 2004, 37: 506 -
35c
Lygo B.Andrews BI. Acc. Chem. Res. 2004, 37: 518 -
35d
Hashimoto T.Maruoka K. Chem. Rev. 2007, 107: 5656 -
35e
Maruoka K. Asymmetric Phase Transfer Catalysis Wiley-VCH; Weinheim: 2008. -
36a
Ohshima T.Shibuguchi T.Fukuta Y.Shibasaki M. Tetrahedron 2004, 60: 7743 -
36b
Chinchilla R.Mazon P.Nájera C.Ortega FJ. Tetrahedron: Asymmetry 2004, 15: 2603 - 37
Klussmann M.Iwamura H.Mathew SP.Wells DH.Pandya U.Armstrong A.Blackmond DG. Nature (London) 2006, 441: 621 - For a discussion about long alkyl chain effects on quaternary ammonium, see:
-
38a
Kitamura M.Shirakawa S.Maruoka K. Angew. Chem. Int. Ed. 2005, 44: 1549 - For combined proline-surfactant organocatalysts, see:
-
38b
Mase N.Nakai Y.Ohara N.Yoda H.Takabe K.Tanaka F.Barbas CF. J. Am. Chem. Soc. 2006, 128: 734 -
38c
Hayashi Y.Aratake S.Okano T.Takahashi J.Sumiya T.Shoji M. Angew. Chem. Int. Ed. 2006, 45: 5527 - For approaches to asymmetric reactions using an excess of chiral surfactant, see:
-
38d
Dasgupta A.Mitra RN.Roy S.Das PK. Chem. Asian J. 2006, 1: 780 ; and references cited therein - For a discussion about surfactant effects on secondary amine catalyzed aldol reactions:
-
39a
See ref. 38b. See also:
-
39b
Cordova A.Notz W.Barbas CF. Chem. Commun. (Cambridge) 2002, 3024 -
39c
Peng Y.-Y.Ding Q.-P.Li Z.Wang PG.Cheng J.-P. Tetrahedron Lett. 2003, 44: 3871 - 40
Girard C.Kagan HB. Angew. Chem. Int. Ed. 1998, 37: 2922 - For the isolation and structural determination of compound 16b, see:
-
42a
Kakeya H.Morishita M.Kobinata K.Osono M.Ishizuka M.Osada H. J. Antibiot. 1998, 51: 1126 -
42b
Kakeya H.Morishita M.Koshino H.Morita T.Kobayashi K.Osada H. J. Org. Chem. 1999, 64: 1052 - For a review on the stereoselective synthesis of compounds 16a and 16b, see:
-
42c
Grajewska A.Rozwadowska MD. Tetrahedron: Asymmetry 2007, 18: 803 ; and references cited therein - For catalytic diastereoselective nitroaldol reactions of chiral aldehydes with nitromethane:
-
43a
See ref. 15d. See also:
-
43b
Sasai H.Kim W.-S.Suzuki T.Shibasaki M.Mistuda M.Hasegawa J.Ohashi T. Tetrahedron Lett. 1994, 35: 6123 -
43c
Corey EJ.Zhang F.-Y. Angew. Chem. Int. Ed. 1999, 38: 1931 - For catalytic doubly diastereoselective nitroaldol reactions of chiral aldehydes with prochiral nitroalkanes, see:
-
43d
Sohtome Y.Kato Y.Handa S.Aoyama N.Nagawa K.Matsunaga S.Shibasaki M. Org. Lett. 2008, 10: 2231 ; and references cited therein - 44
Reetz MT. Chem. Rev. 1999, 99: 1121 - For general reviews on the stereoselective construction of quaternary stereocenters, see:
-
45a
Christofees J.Baro A. Adv. Synth. Catal. 2005, 347: 1473 -
45b
Quaternary Stereocenters
- Challenges and Solutions for Organic Synthesis
Christofees J.Baro A. Wiley-VCH; Weinheim: 2005. -
45c
Douglas CJ.Overman LE. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5363 - For enantioselective nitroaldol reactions of α-keto esters, see:
-
46a
Christensen C.Juhl K.Jørgensen KA. Chem. Commun. (Cambridge) 2001, 2222 -
46b
Christensen C.Juhl K.Jørgensen KA. J. Org. Chem. 2002, 67: 4875 -
46c
Lu S.-F.Du D.-M.Zhang SW.Xu J. Tetrahedron: Asymmetry 2004, 15: 3433 -
46d
Du D.-M.Lu S.-F.Fang T.Xu J. J. Org. Chem. 2005, 70: 3712 -
46e
Qin B.Xiao X.Liu X.Huang J.Wen Y.Feng X. J. Org. Chem. 2007, 72: 10302 -
46f
Choudary BM.Ranganath KVS.Pal U.Kantam ML.Sreedhar B. J. Am. Chem. Soc. 2005, 127: 13167 -
46g
Li H.Wang B.Deng L. J. Am. Chem. Soc. 2006, 128: 732 - For enantioselective nitroaldol reactions of α-ketophosphonates, see:
-
46h
Mandal T.Samanta S.Zhao C.-G. Org. Lett. 2007, 9: 943 - For enantioselective nitroaldol reactions of trifluoromethyl ketones, see:
-
46i
Tur F.Saá JM. Org. Lett. 2007, 9: 5079 - For catalytic kinetic resolution approaches to construct chiral tertiary nitroaldol reaction products from simple ketones:
-
46j
See also ref. 34.
- 48 For original work concerning ‘on
water’ acceleration, see:
Narayan S.Muldoon J.Finn MG.Fokin VV.Kolb HC.Sharpless KB. Angew. Chem. Int. Ed. 2005, 44: 3275 - For general reviews on catalytic asymmetric Mannich-type reactions, see:
-
49a
Ting A.Schaus SE. Eur. J. Org. Chem. 2007, 5797 -
49b
Verkade JM.van Hemert JC.Quaedflieg PLM.Rutjes FJT. Chem. Soc. Rev. 2007, 37: 29 - For reviews on catalytic asymmetric nitro-Mannich-type reactions, see:
-
50a
Westermann B. Angew. Chem. Int. Ed. 2003, 42: 151 -
50b
Marqués-Lopéz E.Merino P.Tejero T.Herrera RP. Eur. J. Org. Chem. 2009, 2401 - For pioneering work on anti-selective catalytic asymmetric nitro-Mannich-type reactions, see:
-
51a
Yamada K.-I.Moll G.Shibasaki M. Synlett 2001, 980 - For other works:
-
51b
See also ref. 50; and references cited therein
- 52 For pioneering work on syn-selective catalytic asymmetric nitro-Mannich-type
reactions, see:
Handa S.Gnanadesikan V.Matsunaga S.Shibasaki M. J. Am. Chem. Soc. 2007, 129: 4900 -
53a
Petrini M. Chem. Rev. 2005, 105: 3949 -
53b
Petrini M.Torregiani E. Synthesis 2007, 159 - For general reviews on catalytic asymmetric epoxidations, see:
-
54a
Modern
Oxidation Methods
Bäckvall J.-E. Wiley-VCH; Weinheim: 2004. -
54b
Xia Q.-H.Ge H.-Q.Ye C.-P.Liu Z.-M.Su K.-X. Chem. Rev. 2005, 105: 1603 - 55
Campos-Martin JM.Blanco-Brieva G.Fierro JLG. Angew. Chem. Int. Ed. 2006, 45: 6962 ; and references cited therein -
56a
Juliá S.Masana J.Vega JC. Angew. Chem. Int. Ed. Engl. 1980, 19: 929 -
56b
Juliá S.Guixer J.Masana J.Rocas J.Colonna S.Annuziata R.Molinari H. J. Chem. Soc., Perkin Trans. 1 1982, 1317 - For representative organocatalytic epoxidations with hydrogen peroxide, see:
-
57a
Arai S.Tsuge H.Shioiri T. Tetrahedron Lett. 1998, 39: 7563 -
57b
Arai S.Tsuge H.Oku M.Miura M.Shioiri T. Tetrahedron 2002, 58: 1623 -
57c
Dehmlow EV.Düttmann S.Neumann B.Stammler H.-G. Eur. J. Org. Chem. 2002, 2087 -
57d
Berkessel A.Gasch N.Glaubiz K.Koch C. Org. Lett. 2001, 3: 3839 -
57e
Kelly DR.Roberts SM. Biopolymers 2006, 84: 74 -
57f
Berkessel A.Koch B.Toniolo C.Rainaldi M.Broxterman QB.Kaptein B. Biopolymers 2006, 84: 90 -
57g
Geller T.Gerlach A.Krüger CM.Militzer H.-C. Tetrahedron Lett. 2004, 45: 5065 -
57h
Geller T.Krüger CM.Militzer H.-C. Tetrahedron Lett. 2004, 45: 5069 -
57i
Yi H.Zou G.Li Q.Chen Q.Tang J.He M.-y. Tetrahedron Lett. 2005, 46: 5665 -
57j
Hori K.Tamura M.Tani K.Nishiwaki N.Ariga M.Tohda Y. Tetrahedron Lett. 2006, 47: 3115 -
57k
Sundén H.Ibrahem I.Córdova A. Tetrahedron Lett. 2006, 47: 99 -
57l
Zhao G.-L.Ibrahem I.Sundén H.Córdova A. Adv. Synth. Catal. 2006, 349: 1210 -
57m
Marigo M.Franzén J.Poulsen TB.Zhuang W.Jørgensen KA. J. Am. Chem. Soc. 2005, 127: 6964 -
57n
Jew S.-s.Lee JH.Jeong B.-S.Yoo M.-S.Kim M.-J.Lee J.Choi S.-h.Lee K.Lah MS.Park H.-g. Angew. Chem. Int. Ed. 2005, 44: 1383 -
57o
Peris G.Jakobsche CE.Miller SJ. J. Am. Chem. Soc. 2007, 129: 8710 -
57p
Wang X.Reisinger CM.List B. J. Am. Chem. Soc. 2008, 130: 6070 -
57q
See also ref. 15k
-
57r
Terada M.Nakano M. Heterocycles 2008, 76: 1049 -
58a
McManus JC.Carey JS.Taylor RJK. Synlett 2003, 365 -
58b
McManus JC.Genski T.Carey JS.Taylor RJK. Synlett 2003, 369 -
58c
Kumamoto T.Ebine K.Endo M.Araki Y.Fushimi Y.Miyamoto I.Ishikawa T.Isobe T.Fukuda K. Heterocycles 2005, 66: 347 -
58d
Allingham MT.Howard-Jones A.Murphy PJ.Thomas DA.Caulkett PWR. Tetrahedron Lett. 2003, 44: 8677 -
58e
See also ref. 57r
References
For other chiral urea and thiourea catalysts, see ref. 6 and references cited therein.
12For other chiral guanidine and guanidinium catalysts, see ref. 10 and references cited therein.
41In the absence of KOH, the reaction did not proceed at all. In addition, no reaction occurred after pretreatment of catalyst 2a with an excess of KOH (10 equiv to 2a). In this catalytic system, KOH might deprotonate the nitroalkane.
47Deng’s group reported an example of a cinchona alkaloid catalyzed nitroaldol reaction of α-keto esters with nitroethane; see ref. 46g.