Synlett 2009(20): 3252-3257  
DOI: 10.1055/s-0029-1218384
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Thieme Chemistry Journal Awardees - Where Are They Now?Synthesis and Optical Properties of Nile Red Modified 2′-Deoxyuridine and 7-Deaza-2′-deoxyadenosine: Highly Emissive Solvatochromic Nucleosides

Reji Varghesea, Praveen Kumar Gajulaa,b, Tushar Kanti Chakrabortyb, Hans-Achim Wagenknecht*a
a Institute for Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
Fax: +49(941)9434617; e-Mail: achim.wagenknecht@chemie.uni-regensburg.de;
b Central Drug Research Institute, CSIR, Chattar Manzil Palace, Post Box No. 173, Lucknow 226 001, UP, India
Further Information

Publication History

Received 30 July 2009
Publication Date:
27 November 2009 (online)

Abstract

A general synthetic strategy for the attachment of Nile red through a rigid acetylene linker to 2′-deoxyuridine and 7-deaza-2′-deoxyadenosine using Sonogashira coupling is demonstrated. Protection of either 5′-OH or N-7 of the nucleosides increased the yields of the cross-couplings significantly. Both Nile red modified 2′-deoxyuridine and 7-deaza-2′-deoxyadenosine as well as their derivatives exhibit excellent fluorescence quantum efficiencies and positive solvatochromism. The incorporation of the Nile red modified 2′-deoxyuridine into oligonucleotides yields bright fluorescent probes with maintained canonical base pairing in DNA.

    References and Notes

  • For reviews, see:
  • 1a Wojczewski C. Stolze K. Engels JW. Synlett  1999,  1667 
  • 1b Johansson MK. Cook RM. Chem. Eur. J.  2003,  9:  3466 
  • 1c Ranasinghe RT. Brown T. Chem. Commun.  2005,  5487 
  • 1d Wilson JN. Kool ET. Org. Biomol. Chem.  2006,  4:  4265 
  • 2a

    See whole issue 17: Tetrahedron 2007, 63.

  • 2b

    See whole issue 1: Bioorg. Med. Chem. 2008, 16.

  • 3a Heyduk T. Heyduk E. Nat. Biotechnol.  2002,  20:  171 
  • 3b Venkatesan N. Seo YJ. Kim BH. Chem. Soc. Rev.  2008,  37:  648 
  • 3c Brunner J. Krämer R. J. Am. Chem. Soc.  2004,  126:  13626 
  • 3d Saito Y. Mizuno E. Bagm SS. Suzuka I. Saito I. Chem. Commun.  2007,  4492 
  • 3e Tan W. Wang K. Drake TJ. Curr. Opin. Chem. Biol.  2004,  8:  547 
  • 3f Martí AA. Jockusch S. Stevens N. Ju J. Turro NJ. Acc. Chem. Res.  2007,  40:  402 
  • 3g Tyagi S. Marras SAE. Kramer FR. Nat. Biotechnol.  2000,  18:  1191 
  • 4a Skorobogatyi MV. Malakhov AD. Pchelintseva AA. Turban AA. Bondarev SL. Korshun VA. ChemBioChem  2006,  7:  810 
  • 4b Skorobogatyi MV. Ustinov AV. Stepanova IA. Pchelintseva AA. Petrunina AL. Andronova GA. Malakhov AD. Korshun VA. Org. Biomol. Chem.  2006,  4:  1091 
  • 5a Thoresen LH. Jiao G.-S. Haaland WC. Metzker ML. Burgess K. Chem. Eur. J.  2003,  9:  4603 
  • 5b Jiao G.-S. Kim TG. Topp MR. Burgess K. Org. Lett.  2004,  6:  1701 
  • 6a Hurley DJ. Tor Y. J. Am. Chem. Soc.  2002,  124:  3749 
  • 6b Hurley DJ. Seaman SE. Mazura JC. Tor Y. Org. Lett.  2002,  4:  2305 
  • 7a Xiao Q. Ranasinghe RT. Tang AMP. Brown T. Tetrahedron  2007,  63:  3483 
  • 7b Brown LJ. Maya JP. Brown T. J. Chem. Soc., Perkin Trans. 1  1998,  1131 
  • 8a Okamoto A. Kanatani K. Saito I. J. Am. Chem. Soc.  2004,  126:  4820 
  • 8b Okamoto A. Tainaka K. Nishiza K. Saito I. J. Am. Chem. Soc.  2005,  127:  13128 
  • 9a Ryu JH. Seo YJ. Hwang GT. Lee JY. Kim BH. Tetrahedron  2007,  63:  3538 
  • 9b Hwang GT. Seo YJ. Kim BH. J. Am. Chem. Soc.  2004,  126:  6528 
  • 10 Fegan A. Shirude PS. Balasubramanian S. Chem. Commun.  2008,  2004 
  • 11a Fendt LA. Bouamaied I. Thöni S. Amiot N. Stulz E. J. Am. Chem. Soc.  2007,  129:  15319 
  • 11b Nguyen T. Brewer A. Stulz E. Angew. Chem. Int. Ed.  2009,  48:  1974 
  • 12 Khan SI. Grinstaff MW. J. Am. Chem. Soc.  1999,  121:  4704 
  • 13 Bittermann H. Siegemund D. Malinovskii VL. Häner R. J. Am. Chem. Soc.  2008,  130:  15285 
  • 14a Wagner C. Wagenknecht H.-A. Chem. Eur. J.  2005,  22:  1871 
  • 14b Mayer E. Valis L. Huber R. Amann N. Wagenknecht H.-A. Synthesis  2003,  2335 
  • 14c Kaden P. Mayer E. Trifonov A. Fiebig T. Wagenknecht H.-A. Angew. Chem. Int. Ed.  2005,  44:  1636 
  • 14d Mayer-Enthart E. Wagenknecht H.-A. Angew. Chem. Int. Ed.  2006,  45:  3372 
  • 14e Wanninger-Weiß C. Wagenknecht H.-A. Eur. J. Org. Chem.  2008,  64 
  • 14f Barbaric J. Wagenknecht H.-A. Org. Biomol. Chem.  2006,  4:  2088 
  • 15 Wanninger-Weiß C. Di Pasquale F. Ehrenschwender T. Marx A. Wagenknecht H.-A. Chem. Commun.  2008,  1443 
  • 16a Uppili S. Thomas KJ. Crompton EM. Ramamurthy V. Langmuir  2000,  16:  265 
  • 16b Meinershagen JL. Bein T. J. Am. Chem. Soc.  1999,  121:  448 
  • 16c Datta A. Mandal D. Pal SK. Bhattacharyya K. J. Phys. Chem. B  1997,  101:  10221 
  • 17 Han J. Jose J. Mei E. Burgess K. Angew. Chem. Int. Ed.  2007,  46:  1684 
  • 18 Seela F. Zulauf M. Synthesis  1996,  726 
  • 27 Okamoto A. Tainaka K. Fujiwara Y. J. Org. Chem.  2006,  71:  3592 
  • 29 Varghese R. Wagenknecht H.-A. Chem. Eur. J.  2009,  15:  9307 
19

General Procedure of Sonogashira Coupling
A mixture of 1 (125 mg, 0.364 mmol), 5-iodo-2′-deoxyuridine, 2 (100 mg, 0.28 mmol), Et3N (0.6 mL, 4 mmol), Pd(PPh3)4 (42 mg, 0.036 mmol), and CuI (15 mg, 0.072 mmol) were dissolved in DMF (5 mL). After the solution was degassed three times via the freeze-pump-thaw method, the mixture was heated at 90 ˚C for 4 h. The reaction solvent was removed under reduced pressure, and the crude product was purified by flash column chromatography (SiO2, 2-3% MeOH in EtOAc eluent) furnishing the desired product 9 (48 mg, 30%) as a dark green solid. R f  = 0.4 (SiO2, 5% MeOH in EtOAc); mp >200 ˚C.

20

Analytical Data
Compound 9: ¹H NMR (300 MHz, CDCl3): δ = 11.79 (s, 1 H), 8.56 (d, J = 1.7 Hz, 1 H), 8.51 (s, 1 H), 8.13 (d, J = 8 Hz, 1 H), 7.75-7.69 (m, 2 H), 6.87 (dd, J = 9.0, 2.5 Hz, 1 H), 6.70 (d, J = 2.5 Hz, 1 H), 6.31 (s, 1 H), 6.15 (t, J = 6.5 Hz, 1 H), 5.25 (d, J = 4.0 Hz, 1 H), 5.24 (t, J = 5.0 Hz, 1 H), 4.32-4.24 (m, 1 H), 3.83 (q, J = 3.3 Hz, 1 H), 3.73-3.58 (m, 2 H), 3.52 (q, J = 6.7 Hz, 4 H), 2.27-2.15 (m, 2 H), 1.17 (t, J = 7.0 Hz, 6 H) ppm. ¹³C NMR (75 MHz, DMSO-d 6): δ = 181.0, 161.3, 151.9, 151.0, 149.5, 146.4, 144.5, 137.0, 134.4, 131.69, 131.53, 131.1, 130.0, 125.5, 125.2, 124.3, 114.2, 110.4, 104.5, 97.6, 95.8, 91.2, 87.5, 85.2, 84.8, 69.8, 60.7, 44.4, 12.3 ppm. ESI-MS: m/z (%) = 569.2 (100) [M + H]+. ESI-HRMS: m/z calcd for C31H28N4O7 [M + H]+: 569.2036; found: 569.2026.

21

Compound 10: ¹H NMR (300 MHz, CDCl3): δ = 8.58 (d, J = 1.4 Hz, 1 H), 8.26 (s, 1 H), 8.17 (br s, 1 H), 7.96 (d, J = 8.0 Hz, 1 H), 7.52 (d, J = 7.4 Hz, 1 H), 7.42 (d, J = 7.4 Hz, 2 H), 7.31 (m, 4 H), 7.25 (s, 1 H), 7.20 (s, 1 H), 7.14-7.06 (m, 1 H), 6.88 (dd, J = 8.2, 1.7 Hz, 1 H), 6.78-6.71 (m, 4 H), 6.64 (dd, J = 9.1, 2.7 Hz, 1 H), 6.42 (d, J = 2.5 Hz, 1 H), 6.34 (m, 1 H), 6.32 (s, 1 H), 4.58 (m, 1 H), 4.07 (m, 1 H), 3.62 (s, 3 H), 3.60 (s, 3 H), 3.49-3.37 (m, 6 H), 3.33 (m, 1 H), 2.53 (m, 1 H), 2.48 (m, 1 H), 1.21 (t, J = 4.7 Hz, 6 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 183.1, 161.1, 158.5, 152.2, 150.9, 149.1, 146.8, 144.4, 142.9, 138.87, 135.5, 135.4, 133.0, 132.5, 132.1, 132.0, 131.7, 131.6, 129.9, 128.6, 128.4, 128.1, 127.9, 127.0, 125.5, 125.2, 125.1, 113.3, 113.1, 110.0, 100.1, 96.1, 93.3, 87.1, 86.8, 72.2, 63.5, 55.1, 45.1, 12.6 ppm. ESI-MS: m/z (%) = 871.4 (100) [M + H]+.

22

Compound 11: ¹H NMR (300 MHz, CDCl3): δ = 8.41 (s, 1 H), 8.37 (s, 1 H), 7.94 (d, J = 8.2 Hz, 1 H), 7.64-7.35 (m, 2 H), 6.55 (m, 1 H), 6.34-6.25 (m, 3 H), 4.67 (m, 1 H), 4.08-3.85 (m, 4 H), 3.39 (q, J = 7.1 Hz, 4 H), 2.50-2.27 (m, 3 H), 1.63-1.53 (m, 2 H), 1.26-1.16 (m, 24 H), 0.83 (t, J = 7.1 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 181.2, 161.2, 151.2, 151.0, 150.1, 146.6, 144.4, 138.5, 135.0, 132.9, 132.1, 132.0, 131.6, 128.6, 128.4, 125.4, 109.0, 104.4, 101.1, 99.5, 96.1, 91.3, 89.5, 87.5, 74.2, 67.6, 46.0, 45.1, 31.9, 29.3, 29.6, 29.5, 27.0, 22.7, 14.1, 12.6 ppm. ESI-HRMS: m/z calcd for C43H52N4O7 [M+ ]: 736.3836; found: 736.3845.

23

Compound 12: ¹H NMR (300 MHz, CDCl3): δ = 8.7 (d, J = 1.3 Hz, 1 H), 8.27-8.19 (m, 2 H), 7.97 (s, 1 H), 7.69-7.38 (m, 2 H), 6.65 (dd, J = 9.0, 2.7 Hz, 1 H), 6.43 (d, J = 2.7 Hz, 1 H), 6.35 (s, 1 H), 6.24 (t, J = 6.3 Hz, 1 H), 4.52-4.12 (m, 4 H), 3.44 (q, J = 6.8 Hz, 4 H), 2.56-2.34 (m, 4 H), 2.21 (m, 1 H), 1.59-1.49 (m, 1 H), 1.26-1.04 (m, 22 H), 0.78 (t, J = 6.8 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 181.7, 176.5, 161.1, 151.4, 150.5, 149.6, 146.5, 143.6, 138.0, 135.4, 132.9, 132.2, 131.6, 131.0, 128.4, 127.2, 125.1, 108.0, 105.2, 102.1, 100.3, 96.4, 91.3, 86.0, 85.8, 72.7, 67.5, 60.4, 45.2, 35.8, 31.9, 30.9, 29.7, 29.5, 22.6, 21.0, 14.2, 12.6 ppm. ESI-HRMS: m/z calcd for C43H50N4O8 [M+ ]: 750.3629; found: 750.3604.

24

Compound 13: ¹H NMR (300 MHz, CDCl3): δ = 8.69 (s, 1 H), 8.24 (br s, 1 H), 8.21 (s, 1 H), 7.62 (s, 1 H), 7.45-7.20 (m, 2 H), 6.79-6.73 (m, 2 H), 6.43 (d, J = 2.4 Hz, 1 H), 6.34 (s, 1 H), 4.56 (m, 1 H), 4.01 (m, 1 H), 3.71-3.61 (m, 2 H), 3.42 (q, J = 7.1 Hz, 4 H), 2.57-2.25 (m, 2 H), 1.23-1.14 (m, 6 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 180.6, 165.2, 156.8, 151.7, 150.4, 148.8, 146.9, 139.2, 135.9, 135.0, 132.0, 131.9, 130.5, 127.7, 126.5, 124.4, 113.9, 110.7, 103.0, 110.7, 104.6, 103.0, 93.2, 90.3, 87.3, 84.2, 83.4, 69.8, 63.7, 48.3, 45.6, 13.0 ppm. ESI-MS: m/z (%) = 591.2 (100) [M + H]+.

25

Compound 14: ¹H NMR (300 MHz, CDCl3): δ = 8.70 (s, 1 H),8.29-8.21 (m, 2 H), 7.66-7.11 (m, 14 H), 6.82-6.62 (m, 4 H), 6.46 (d, J = 2.4 Hz, 1 H), 6.36 (s, 1 H), 4.57 (m, 1 H), 4.05 (m, 1 H), 3.77-3.63 (m, 8 H), 3.45 (q, J = 7.1 Hz, 4 H), 2.53-2.27 (m, 2 H), 1.26-1.16 (m, 6 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 182.2, 158.5, 157.4, 155.0, 152.1, 150.8, 149.4, 146.9, 144.6, 142.6, 139.2, 136.5, 135.7, 135.6, 133.7, 132.1, 132.0, 130.2, 130.1, 128.4, 128.2, 127.9, 126.3, 125.1, 113.2, 113.1, 111.7, 109.7, 101.9, 100.3, 96.2, 92.8, 86.6, 85.5, 81.1, 71.6, 69.5, 66.9, 55.2, 53.7, 45.1, 12.6 ppm. ESI-MS: m/z (%) = 893.3 (100) [M + H]+.

26

Compound 15: ¹H NMR (300 MHz, CD3CN): δ = 8.5 (s, 1 H), 8.01-7.98 (m, 2 H), 7.79-7.52 (m, 7 H), 7.46-7.11 (m, 10 H), 6.85-6.74 (m, 6 H), 6.60-6.52 (m, 2 H), 6.45 (m, 1 H), 5.32 (br, 1 H), 4.48 (m, 1 H), 3.93 (m, 1 H), 3.74 (d, J = 2.7 Hz, 6 H), 3.69 (m, 2 H), 3.48 (q, J = 7.1 Hz, 4 H), 2.52 (m, 1 H), 2.28 (m, 1 H), 1.18-1.14 (m, 6 H) ppm. ¹³C NMR (75 MHz, CD3CN): δ = 182.2, 169.0, 160.7, 157.0, 155.2, 152.9, 150.8, 146.2, 144.0, 141.0, 139.1, 136.9, 135.9, 135.6, 134.3, 133.9, 133.1, 131.6, 131.1, 130.6, 129.6, 129.3, 128.6, 128.4, 127.7, 127.3, 126.6, 124.7, 114.0, 108.9, 106.5, 110.2, 102.5, 101.4, 97.8, 91.2, 87.6, 85.3, 82.6, 73.2, 64.8, 52.6, 45.7, 38.4, 13.5 ppm. ESI-MS: m/z (%) = 997.4 (100) [M + H]+.

28

The oligonucleotides were prepared on an Expedite 8909 DNA synthesizer (Applied Biosystems) via standard phosphoramidite protocols using CPGs (1 µmol) with a longer coupling time of 15 min and a higher concentration of the phosphoramidite (0.1 M). After preparation, the trityl-
off oligonucleotide was cleaved off the resin and was deprotected by treatment with concd NH4OH at r.t. for 10 h. The oligonucleotides were dried and purified by reverse-phase HPLC using the following conditions: A = NH4OAc buffer (50 mM), pH = 6.5; B = MeCN; gradient = 0-20% B over 50 min. The oligonucleotides were lyophilized and quantified by their absorbance at 260 nm on a Varian Cary Bio 100 spectrometer. Duplexes were prepared by heating of Nile red modified oligonucleotides in the presence of 1 equiv unmodified complementary strand to 90 ˚C (10 min), followed by slow cooling to r.t. ESI-MS: DNA1: m/z calcd 5475.4; found: 5475.1 (100%); DNA2: m/z calcd 5575.4; found = 5575.1 (100%).