Subscribe to RSS
DOI: 10.1055/s-0029-1218384
Thieme Chemistry Journal Awardees - Where Are They Now?Synthesis and Optical Properties of Nile Red Modified 2′-Deoxyuridine and 7-Deaza-2′-deoxyadenosine: Highly Emissive Solvatochromic Nucleosides
Publication History
Publication Date:
27 November 2009 (online)
Abstract
A general synthetic strategy for the attachment of Nile red through a rigid acetylene linker to 2′-deoxyuridine and 7-deaza-2′-deoxyadenosine using Sonogashira coupling is demonstrated. Protection of either 5′-OH or N-7 of the nucleosides increased the yields of the cross-couplings significantly. Both Nile red modified 2′-deoxyuridine and 7-deaza-2′-deoxyadenosine as well as their derivatives exhibit excellent fluorescence quantum efficiencies and positive solvatochromism. The incorporation of the Nile red modified 2′-deoxyuridine into oligonucleotides yields bright fluorescent probes with maintained canonical base pairing in DNA.
Key words
cross-coupling - dyes - nucleosides - solvent effects - spectroscopy
- For reviews, see:
-
1a
Wojczewski C.Stolze K.Engels JW. Synlett 1999, 1667 -
1b
Johansson MK.Cook RM. Chem. Eur. J. 2003, 9: 3466 -
1c
Ranasinghe RT.Brown T. Chem. Commun. 2005, 5487 -
1d
Wilson JN.Kool ET. Org. Biomol. Chem. 2006, 4: 4265 -
2a
See whole issue 17: Tetrahedron 2007, 63.
-
2b
See whole issue 1: Bioorg. Med. Chem. 2008, 16.
-
3a
Heyduk T.Heyduk E. Nat. Biotechnol. 2002, 20: 171 -
3b
Venkatesan N.Seo YJ.Kim BH. Chem. Soc. Rev. 2008, 37: 648 -
3c
Brunner J.Krämer R. J. Am. Chem. Soc. 2004, 126: 13626 -
3d
Saito Y.Mizuno E.Bagm SS.Suzuka I.Saito I. Chem. Commun. 2007, 4492 -
3e
Tan W.Wang K.Drake TJ. Curr. Opin. Chem. Biol. 2004, 8: 547 -
3f
Martí AA.Jockusch S.Stevens N.Ju J.Turro NJ. Acc. Chem. Res. 2007, 40: 402 -
3g
Tyagi S.Marras SAE.Kramer FR. Nat. Biotechnol. 2000, 18: 1191 -
4a
Skorobogatyi MV.Malakhov AD.Pchelintseva AA.Turban AA.Bondarev SL.Korshun VA. ChemBioChem 2006, 7: 810 -
4b
Skorobogatyi MV.Ustinov AV.Stepanova IA.Pchelintseva AA.Petrunina AL.Andronova GA.Malakhov AD.Korshun VA. Org. Biomol. Chem. 2006, 4: 1091 -
5a
Thoresen LH.Jiao G.-S.Haaland WC.Metzker ML.Burgess K. Chem. Eur. J. 2003, 9: 4603 -
5b
Jiao G.-S.Kim TG.Topp MR.Burgess K. Org. Lett. 2004, 6: 1701 -
6a
Hurley DJ.Tor Y. J. Am. Chem. Soc. 2002, 124: 3749 -
6b
Hurley DJ.Seaman SE.Mazura JC.Tor Y. Org. Lett. 2002, 4: 2305 -
7a
Xiao Q.Ranasinghe RT.Tang AMP.Brown T. Tetrahedron 2007, 63: 3483 -
7b
Brown LJ.Maya JP.Brown T. J. Chem. Soc., Perkin Trans. 1 1998, 1131 -
8a
Okamoto A.Kanatani K.Saito I. J. Am. Chem. Soc. 2004, 126: 4820 -
8b
Okamoto A.Tainaka K.Nishiza K.Saito I. J. Am. Chem. Soc. 2005, 127: 13128 -
9a
Ryu JH.Seo YJ.Hwang GT.Lee JY.Kim BH. Tetrahedron 2007, 63: 3538 -
9b
Hwang GT.Seo YJ.Kim BH. J. Am. Chem. Soc. 2004, 126: 6528 - 10
Fegan A.Shirude PS.Balasubramanian S. Chem. Commun. 2008, 2004 -
11a
Fendt LA.Bouamaied I.Thöni S.Amiot N.Stulz E. J. Am. Chem. Soc. 2007, 129: 15319 -
11b
Nguyen T.Brewer A.Stulz E. Angew. Chem. Int. Ed. 2009, 48: 1974 - 12
Khan SI.Grinstaff MW. J. Am. Chem. Soc. 1999, 121: 4704 - 13
Bittermann H.Siegemund D.Malinovskii VL.Häner R. J. Am. Chem. Soc. 2008, 130: 15285 -
14a
Wagner C.Wagenknecht H.-A. Chem. Eur. J. 2005, 22: 1871 -
14b
Mayer E.Valis L.Huber R.Amann N.Wagenknecht H.-A. Synthesis 2003, 2335 -
14c
Kaden P.Mayer E.Trifonov A.Fiebig T.Wagenknecht H.-A. Angew. Chem. Int. Ed. 2005, 44: 1636 -
14d
Mayer-Enthart E.Wagenknecht H.-A. Angew. Chem. Int. Ed. 2006, 45: 3372 -
14e
Wanninger-Weiß C.Wagenknecht H.-A. Eur. J. Org. Chem. 2008, 64 -
14f
Barbaric J.Wagenknecht H.-A. Org. Biomol. Chem. 2006, 4: 2088 - 15
Wanninger-Weiß C.Di Pasquale F.Ehrenschwender T.Marx A.Wagenknecht H.-A. Chem. Commun. 2008, 1443 -
16a
Uppili S.Thomas KJ.Crompton EM.Ramamurthy V. Langmuir 2000, 16: 265 -
16b
Meinershagen JL.Bein T. J. Am. Chem. Soc. 1999, 121: 448 -
16c
Datta A.Mandal D.Pal SK.Bhattacharyya K. J. Phys. Chem. B 1997, 101: 10221 - 17
Han J.Jose J.Mei E.Burgess K. Angew. Chem. Int. Ed. 2007, 46: 1684 - 18
Seela F.Zulauf M. Synthesis 1996, 726 - 27
Okamoto A.Tainaka K.Fujiwara Y. J. Org. Chem. 2006, 71: 3592 - 29
Varghese R.Wagenknecht H.-A. Chem. Eur. J. 2009, 15: 9307
References and Notes
General Procedure
of Sonogashira Coupling
A mixture of 1 (125
mg, 0.364 mmol), 5-iodo-2′-deoxyuridine, 2 (100
mg, 0.28 mmol), Et3N (0.6 mL, 4 mmol), Pd(PPh3)4 (42
mg, 0.036 mmol), and CuI (15 mg, 0.072 mmol) were dissolved in DMF
(5 mL). After the solution was degassed three times via the freeze-pump-thaw
method, the mixture was heated at 90 ˚C for 4
h. The reaction solvent was removed under reduced pressure, and the
crude product was purified by flash column chromatography (SiO2,
2-3% MeOH in EtOAc eluent) furnishing the desired
product 9 (48 mg, 30%) as a dark green
solid. R
f
= 0.4
(SiO2, 5% MeOH in EtOAc); mp >200 ˚C.
Analytical Data
Compound 9: ¹H NMR (300 MHz,
CDCl3): δ = 11.79
(s, 1 H), 8.56 (d, J = 1.7
Hz, 1 H), 8.51 (s, 1 H), 8.13 (d, J = 8
Hz, 1 H), 7.75-7.69 (m, 2 H), 6.87 (dd, J = 9.0,
2.5 Hz, 1 H), 6.70 (d, J = 2.5
Hz, 1 H), 6.31 (s, 1 H), 6.15 (t, J = 6.5
Hz, 1 H), 5.25 (d, J = 4.0
Hz, 1 H), 5.24 (t, J = 5.0
Hz, 1 H), 4.32-4.24 (m, 1 H), 3.83 (q, J = 3.3
Hz, 1 H), 3.73-3.58 (m, 2 H), 3.52 (q, J = 6.7
Hz, 4 H), 2.27-2.15 (m, 2 H), 1.17 (t, J = 7.0
Hz, 6 H) ppm. ¹³C NMR (75 MHz, DMSO-d
6): δ = 181.0,
161.3, 151.9, 151.0, 149.5, 146.4, 144.5, 137.0, 134.4, 131.69, 131.53,
131.1, 130.0, 125.5, 125.2, 124.3, 114.2, 110.4, 104.5, 97.6, 95.8,
91.2, 87.5, 85.2, 84.8, 69.8, 60.7, 44.4, 12.3 ppm. ESI-MS: m/z (%) = 569.2
(100) [M + H]+. ESI-HRMS: m/z calcd for C31H28N4O7 [M + H]+:
569.2036; found: 569.2026.
Compound 10: ¹H NMR (300 MHz, CDCl3): δ = 8.58 (d, J = 1.4 Hz, 1 H), 8.26 (s, 1 H), 8.17 (br s, 1 H), 7.96 (d, J = 8.0 Hz, 1 H), 7.52 (d, J = 7.4 Hz, 1 H), 7.42 (d, J = 7.4 Hz, 2 H), 7.31 (m, 4 H), 7.25 (s, 1 H), 7.20 (s, 1 H), 7.14-7.06 (m, 1 H), 6.88 (dd, J = 8.2, 1.7 Hz, 1 H), 6.78-6.71 (m, 4 H), 6.64 (dd, J = 9.1, 2.7 Hz, 1 H), 6.42 (d, J = 2.5 Hz, 1 H), 6.34 (m, 1 H), 6.32 (s, 1 H), 4.58 (m, 1 H), 4.07 (m, 1 H), 3.62 (s, 3 H), 3.60 (s, 3 H), 3.49-3.37 (m, 6 H), 3.33 (m, 1 H), 2.53 (m, 1 H), 2.48 (m, 1 H), 1.21 (t, J = 4.7 Hz, 6 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 183.1, 161.1, 158.5, 152.2, 150.9, 149.1, 146.8, 144.4, 142.9, 138.87, 135.5, 135.4, 133.0, 132.5, 132.1, 132.0, 131.7, 131.6, 129.9, 128.6, 128.4, 128.1, 127.9, 127.0, 125.5, 125.2, 125.1, 113.3, 113.1, 110.0, 100.1, 96.1, 93.3, 87.1, 86.8, 72.2, 63.5, 55.1, 45.1, 12.6 ppm. ESI-MS: m/z (%) = 871.4 (100) [M + H]+.
22Compound 11: ¹H NMR (300 MHz, CDCl3): δ = 8.41 (s, 1 H), 8.37 (s, 1 H), 7.94 (d, J = 8.2 Hz, 1 H), 7.64-7.35 (m, 2 H), 6.55 (m, 1 H), 6.34-6.25 (m, 3 H), 4.67 (m, 1 H), 4.08-3.85 (m, 4 H), 3.39 (q, J = 7.1 Hz, 4 H), 2.50-2.27 (m, 3 H), 1.63-1.53 (m, 2 H), 1.26-1.16 (m, 24 H), 0.83 (t, J = 7.1 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 181.2, 161.2, 151.2, 151.0, 150.1, 146.6, 144.4, 138.5, 135.0, 132.9, 132.1, 132.0, 131.6, 128.6, 128.4, 125.4, 109.0, 104.4, 101.1, 99.5, 96.1, 91.3, 89.5, 87.5, 74.2, 67.6, 46.0, 45.1, 31.9, 29.3, 29.6, 29.5, 27.0, 22.7, 14.1, 12.6 ppm. ESI-HRMS: m/z calcd for C43H52N4O7 [M+ ]: 736.3836; found: 736.3845.
23Compound 12: ¹H NMR (300 MHz, CDCl3): δ = 8.7 (d, J = 1.3 Hz, 1 H), 8.27-8.19 (m, 2 H), 7.97 (s, 1 H), 7.69-7.38 (m, 2 H), 6.65 (dd, J = 9.0, 2.7 Hz, 1 H), 6.43 (d, J = 2.7 Hz, 1 H), 6.35 (s, 1 H), 6.24 (t, J = 6.3 Hz, 1 H), 4.52-4.12 (m, 4 H), 3.44 (q, J = 6.8 Hz, 4 H), 2.56-2.34 (m, 4 H), 2.21 (m, 1 H), 1.59-1.49 (m, 1 H), 1.26-1.04 (m, 22 H), 0.78 (t, J = 6.8 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 181.7, 176.5, 161.1, 151.4, 150.5, 149.6, 146.5, 143.6, 138.0, 135.4, 132.9, 132.2, 131.6, 131.0, 128.4, 127.2, 125.1, 108.0, 105.2, 102.1, 100.3, 96.4, 91.3, 86.0, 85.8, 72.7, 67.5, 60.4, 45.2, 35.8, 31.9, 30.9, 29.7, 29.5, 22.6, 21.0, 14.2, 12.6 ppm. ESI-HRMS: m/z calcd for C43H50N4O8 [M+ ]: 750.3629; found: 750.3604.
24Compound 13: ¹H NMR (300 MHz, CDCl3): δ = 8.69 (s, 1 H), 8.24 (br s, 1 H), 8.21 (s, 1 H), 7.62 (s, 1 H), 7.45-7.20 (m, 2 H), 6.79-6.73 (m, 2 H), 6.43 (d, J = 2.4 Hz, 1 H), 6.34 (s, 1 H), 4.56 (m, 1 H), 4.01 (m, 1 H), 3.71-3.61 (m, 2 H), 3.42 (q, J = 7.1 Hz, 4 H), 2.57-2.25 (m, 2 H), 1.23-1.14 (m, 6 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 180.6, 165.2, 156.8, 151.7, 150.4, 148.8, 146.9, 139.2, 135.9, 135.0, 132.0, 131.9, 130.5, 127.7, 126.5, 124.4, 113.9, 110.7, 103.0, 110.7, 104.6, 103.0, 93.2, 90.3, 87.3, 84.2, 83.4, 69.8, 63.7, 48.3, 45.6, 13.0 ppm. ESI-MS: m/z (%) = 591.2 (100) [M + H]+.
25Compound 14: ¹H NMR (300 MHz, CDCl3): δ = 8.70 (s, 1 H),8.29-8.21 (m, 2 H), 7.66-7.11 (m, 14 H), 6.82-6.62 (m, 4 H), 6.46 (d, J = 2.4 Hz, 1 H), 6.36 (s, 1 H), 4.57 (m, 1 H), 4.05 (m, 1 H), 3.77-3.63 (m, 8 H), 3.45 (q, J = 7.1 Hz, 4 H), 2.53-2.27 (m, 2 H), 1.26-1.16 (m, 6 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 182.2, 158.5, 157.4, 155.0, 152.1, 150.8, 149.4, 146.9, 144.6, 142.6, 139.2, 136.5, 135.7, 135.6, 133.7, 132.1, 132.0, 130.2, 130.1, 128.4, 128.2, 127.9, 126.3, 125.1, 113.2, 113.1, 111.7, 109.7, 101.9, 100.3, 96.2, 92.8, 86.6, 85.5, 81.1, 71.6, 69.5, 66.9, 55.2, 53.7, 45.1, 12.6 ppm. ESI-MS: m/z (%) = 893.3 (100) [M + H]+.
26Compound 15: ¹H NMR (300 MHz, CD3CN): δ = 8.5 (s, 1 H), 8.01-7.98 (m, 2 H), 7.79-7.52 (m, 7 H), 7.46-7.11 (m, 10 H), 6.85-6.74 (m, 6 H), 6.60-6.52 (m, 2 H), 6.45 (m, 1 H), 5.32 (br, 1 H), 4.48 (m, 1 H), 3.93 (m, 1 H), 3.74 (d, J = 2.7 Hz, 6 H), 3.69 (m, 2 H), 3.48 (q, J = 7.1 Hz, 4 H), 2.52 (m, 1 H), 2.28 (m, 1 H), 1.18-1.14 (m, 6 H) ppm. ¹³C NMR (75 MHz, CD3CN): δ = 182.2, 169.0, 160.7, 157.0, 155.2, 152.9, 150.8, 146.2, 144.0, 141.0, 139.1, 136.9, 135.9, 135.6, 134.3, 133.9, 133.1, 131.6, 131.1, 130.6, 129.6, 129.3, 128.6, 128.4, 127.7, 127.3, 126.6, 124.7, 114.0, 108.9, 106.5, 110.2, 102.5, 101.4, 97.8, 91.2, 87.6, 85.3, 82.6, 73.2, 64.8, 52.6, 45.7, 38.4, 13.5 ppm. ESI-MS: m/z (%) = 997.4 (100) [M + H]+.
28The oligonucleotides were prepared
on an Expedite 8909 DNA synthesizer (Applied Biosystems) via standard phosphoramidite
protocols using CPGs (1 µmol) with a longer coupling time
of 15 min and a higher concentration of the phosphoramidite (0.1
M). After preparation, the trityl-
off oligonucleotide
was cleaved off the resin and was deprotected by treatment with
concd NH4OH at r.t. for 10 h. The oligonucleotides were
dried and purified by reverse-phase HPLC using the following conditions:
A = NH4OAc buffer (50 mM),
pH = 6.5; B = MeCN;
gradient = 0-20% B over
50 min. The oligonucleotides were lyophilized and quantified by
their absorbance at 260 nm on a Varian Cary Bio 100 spectrometer.
Duplexes were prepared by heating of Nile red modified oligonucleotides
in the presence of 1 equiv unmodified complementary strand to 90 ˚C
(10 min), followed by slow cooling to r.t. ESI-MS: DNA1: m/z calcd 5475.4; found: 5475.1
(100%); DNA2: m/z calcd
5575.4; found = 5575.1 (100%).