Subscribe to RSS
DOI: 10.1055/s-0029-1218363
An Acyl-Claisen Approach to Tetrasubstituted Tetrahydrofuran Lignans: Synthesis of Fragransin A2, Talaumidin, and Lignan Analogues
Publication History
Publication Date:
11 November 2009 (online)
Abstract
A simple and stereocontrolled synthesis of racemic 2,3,4,5-tetrasubstituted tetrahydrofurans was achieved from acyl-Claisen derived syn-disubstituted amides.
Key words
tetrahydrofurans - acyl-Claisen reaction - aza-Claisen reaction - lignans - stereospecific synthesis
-
1a
Saleem M.Kim HJ.Ali MS.Lee YS. Nat. Prod. Rep. 2005, 22: 696 -
1b
Ward RS. Nat. Prod. Rep. 1999, 16: 75 -
1c
da Silva Filho AA.Albuquerque S.e Silva MLA.Eberlin MN.Tomazela DM.Bastos JK. J. Nat. Prod. 2004, 67: 42 -
1d
Zhai H.Inoue T.Moriyama M.Esumi T.Mitsumoto Y.Fukuyama Y. Biol. Pharm. Bull. 2005, 28: 289 -
1e
Kraft C.Jenett-Siems K.Kohler I.Tofern-Reblin B.Siems K.Bienzle U.Eich E. Phytochemistry 2002, 60: 167 -
1f
Abe F.Nagafuji S.Yamauchi T.Okabe H.Maki J.Higo H.Akahane H.Aguilar A.Jimenez-Estrada M.Reyes-Chilpa R. Biol. Pharm. Bull. 2002, 25: 1188 -
1g
Zhang HJ.Tamez PA.Hoang VD.Tan GT.Hung NV.Xuan LT.Huong LM.Guong NM.Thao DT.Soejarto DD.Fong HHS.Pezzuto JM. J. Nat. Prod. 2001, 64: 772 -
1h
Fernandes AMAP.Barata LES.Ferri PH. Phytochemistry 1993, 32: 1567 -
2a
Hattori M.Hada S.Kawata Y.Tezuka Y.Kikuchi T.Namba T. Chem. Pharm. Bull. 1987, 35: 3315 -
2b
Hanessian S.Reddy GJ. Synlett 2007, 475 -
3a
Zhai H.Nakatsukasa M.Mitsumoto Y.Fukuyama Y. Planta Med. 2004, 70: 598 -
3b
Esumi T.Hojyo D.Zhai H.Fukuyama Y. Tetrahedron Lett. 2006, 47: 3979 -
4a
Rao KV.Alvarez FM. Tetrahedron Lett. 1983, 24: 4947 -
4b
Hanessian S.Reddy GJ.Chahal N. Org. Lett. 2006, 8: 5477 -
4c
Kasper AC.Moon EJ.Hu X.Park Y.Wooten CM.Kim H.Yang W.Dewhirst MW.Hong J. Bioorg. Med. Chem. Lett. 2009, 19: 3783 -
5a
Moinuddin SGA.Hishiyama S.Cho M.-H.Davin LB.Lewis NG. Org. Biomol. Chem. 2003, 1: 2307 -
5b
Yu B.-B.Han X.-Z.Lou H.-X. J. Agric. Food Chem. 2007, 55: 7753 -
5c
Panzella L.De Lucia M.Amalfitano C.Pezzella A.Evidente A.Napolitano A.D’Ischia M. J. Org. Chem. 2006, 71: 4246 - 6
Biftu T.Gamble NF.Doebber T.Hwang S.-B.Shen T.-Y.Snyder J.Springer JP.Stevenson R. J. Med. Chem. 1986, 29: 1917 - 7
Jahn U.Rudakov D. Org. Lett. 2006, 8: 4481 -
8a
Yu C.-M.Choi H.-S.Lee J.Jung W.-H.Kim H.-J. J. Chem. Soc., Perkin Trans. 1 1996, 115 -
8b
Yoon TP.Dong VM.MacMillan DWC. J. Am. Chem. Soc. 1999, 121: 9726 -
8c
Diederich M.Nubbemeyer U. Angew. Chem., Int. Ed. Engl. 1995, 34: 1026 -
8d
Deur CJ.Miller MW.Hegedus LS. J. Org. Chem. 1996, 61: 2871 -
8e For complete information,
see:
Nubbermeyer U. In
The Claisen Rearrangement: Methods and ApplicationsHiersemann M.Nubbemeyer U. Wiley-VCH; Weinheim: 2007. p.461 ; and references cited therein -
9a
Reyes E.Vicario JL.Carrillo L.Badía D.Uria U.Iza A. J. Org. Chem. 2006, 71: 7763 ; and references cited therein -
9b
Myers AG.Yang BH.Chen H.McKinstry L.Kopecky DJ.Gleason JL. J. Am. Chem. Soc. 1997, 119: 6496 -
9c
Reyes E.Vicario JL.Badía D.Carrillo L.Iza A.Uria U. Org. Lett. 2006, 8: 2535 -
10a
Raubo P.Giuliano C.Hill AW.Huscroft IT.London C.Reeve A.Seward EM.Swain CG.Kulagowski JJ. Synlett 2006, 600 -
10b
Xu Q.Rozners E. Org. Lett. 2005, 7: 2821 -
10c
Laabs S.Munch W.Bats JW.Nubbemeyer U. Tetrahedron 2002, 58: 1317 -
12a
Concellon JM.Rodriguez-Solla H.Mejica C.Blanco EG.Garcia-Granda S.Diaz MR. J. Org. Chem. 2008, 73: 3828 -
12b
Olivella A.Rodriguez-Escrich C.Urpi F.Vilarrasa J. J. Org. Chem. 2008, 73: 1578 -
12c
Concellon JM.Rodriguez-Solla H.Diaz P. J. Org. Chem. 2007, 72: 7974 - 14
Konno C.Lu ZZ.Xue HZ.-g.Erdelmeier CAJ.Meksuriyen D.Che CT.Cordell GA.Soejarto DD.Waller DP.Fong HHS. J. Nat. Prod. 1990, 53: 396
References and Notes
(E)-Crotylamines were prepared from (E)-crotonaldehyde, by LAH reduction and PBr3 bromination to give (E)-crotyl bromide. Amine 5a was prepared by amination with morpholine at 0 ˚C in CH2Cl2, whilst amine 5b was prepared using the sodium hydride derived sodium salt of pyrrolidine and TBAI in THF.
13We found that the TES groups were cleaved during the dihydroxylation step to give extremely polar triols and the use of TBDMS groups was unsatisfactory as they did not spontaneously cleave during the cyclization step and, instead, gave unwanted products.
15
General Procedure
for the Synthesis of Amides 4: To a stirred suspension of AlCl3 (0.1
mmol) in CH2Cl2 (5 mL) under an atmosphere
of N2, a solution of (E)-4-(but-2-enyl)amine 5 (1 mmol) in CH2Cl2 (5
mL) was added dropwise, followed by diisopropylethylamine (1.5 mmol) dropwise.
The resultant mixture was stirred at r.t. for 15 min, then a solution
of acid chloride 6 (1.2 mmol) in CH2Cl2 (5 mL)
was added dropwise and the reaction mixture was stirred at r.t.
for 24 h. Aq NaOH (10 mL) was added, the layers were separated and
the aqueous layer was further extracted with CH2Cl2 (3 × 15
mL). The combined organic extracts were washed with brine (20 mL),
dried (MgSO4) and the solvent was removed in vacuo. The crude product was purified by flash
chromatography to give the amides 4 in 24-88% yields.
General Procedure for the Synthesis
of Ketones 7: To a solution of aryl bromide (1.2 mmol) in THF
(20 mL) under an atmosphere of N2 at -78 ˚C,
was added, either n-BuLi (1.2 mmol for 8a) or t-BuLi
(2.4 mmol for 8b-d)
and the resultant solution was stirred for 10 min. A solution of
amide 4 (1 mmol) in THF (5 mL) was then
added dropwise and the mixture was stirred at -78 ˚C
and slowly warmed to r.t. over 2-18 h. Sat. NH4Cl
solution (20 mL) was added and the aqueous mixture was extracted
with EtOAc (3 × 30 mL). The combined
organic extracts were dried (MgSO4) and the solvent was
removed in vacuo. The crude product was purified
by flash chromatography to give the ketones 7
in 43-96% yields.
General Procedure for the Synthesis of Tetrahydrofurans
12: To a solution of alcohol 11 (1
mmol) and Et3N (1.6 mmol) in CH2Cl2 (25
mL) under an atmosphere of N2 was added MsCl (1.3 mmol)
and the reaction mixture was stirred for 1-2 h. Sat NaHCO3 solution (10
mL) was added, the layers were separated and the aqueous layer was
further extracted with CH2Cl2 (3 × 15 mL).
The combined organic extracts were dried (Na2SO4) and
the solvent was removed in vacuo. The
crude product was purified by flash chromatography to give the tetrahydrofurans 12 in 63-81% yields.
Spectroscopic
Data for Selected Products:
(±)-Dimethoxy-4-epi-larreatricin (12a): ¹H
NMR (400 MHz, CDCl3): δ = 1.01 (m,
6 H, CHCH
3), 1.78 (m, 2 H,
CH), 3.78 (s, 6 H, OMe), 4.63 (d, J = 9.0
Hz, 2 H, OCH), 6.87 (d, J = 8.7
Hz, 4 H, 2′-Ar), 7.31 (d, J = 8.4
Hz, 4 H, 3′-Ar). ¹³C NMR (100
MHz, CDCl3): δ = 13.7 (2 × CH3),
51.0 (2 × CH), 55.2 (OCH3),
88.0 (2 × CH), 113.6 (2 × CH),
127.4 (2 × CH), 134.5 (q), 159.0(q).
IR (film): 2954, 2833, 1609, 1584, 1507, 1454, 1299, 1239, 1169,
1025, 821, 726 cm-¹. MS (EI+): m/z (%) = 312
(8) [M+], 176 (100), 161 (60),
135 (12), 77 (6). Anal. Calcd for C20H24O3 [M+]:
312.17254. Found: 312.17286. The ¹H NMR data
was in agreement with the literature values.¹4(±)-2-(3,4-Dimethoxyphenyl)-3,4-dimethyl-5-(3-methoxy-4-hydroxyphenyl)tetrahydrofuran
(12b):
¹H
NMR (400 MHz, CDCl3): δ = 1.12 (d, J = 6.4 Hz, 6 H, 3- and 4-CH3),
1.95-2.02 (m, 2 H, 3- and 4-H), 3.91 (s, 9 H, OMe), 4.75
(d, J = 10.0 Hz, 2 H, 2- and
5-H), 5.69 (br s, 1 H, OH), 6.81-6.92 (m, 6 H, Ar-H). ¹³C
NMR (100 MHz, CDCl3): δ = 14.3 (2 × CH3),
47.8 (2 × CH, C-3 and C-4), 56.0 (3 × OCH3),
86.4 (2 × CH, C-2 and C-5), 108.3 (2 × CH),
114.1 (2 × CH), 119 (2 × CH),
129.1 (q), 140.1 (q), 146.1 (q), 146.8 (q). IR (film): 3426.6, 2967.1,
1766, 1607.1, 1519, 1459.9, 1380.0, 1275.8, 1237.2, 1176, 1033 cm-¹.
MS (ESI): m/z (%) = 381
(11) [M + Na]+, 359
(8)
[M + H]+,
259 (83), 237 (100), 191 (22). Anal. Calcd for C21H27O5:
359.1858 [M + H+].
Found: 359.1864.
(±)-Talaumidin (rac
-2, 12c): ¹H NMR (400 MHz,
CDCl3):
δ = 1.03 (m, 6 H,
3- and 4-CH3), 1.78 (m, 2 H, 3- and 4-H), 3.91 (s, 3
H, OCH3), 4.61 (d, J = 5.2
Hz, 2 H, 2- and 5-H), 5.59 (br s, 1 H, OH), 5.94 (s, 2 H, OCH2O),
6.77-6.93 (m, 6 H, Ar-H). ¹³C
NMR (100 MHz, CDCl3): δ = 13.8 (CH3),
50.8 (CH), 51.1 (CH), 55.9 (OCH3), 88.2 (CH), 88.4 (CH),
100.9 (CH2), 106.5 (CH), 107.9 (CH), 108.5 (CH), 114.0
(CH), 119.4 (CH), 119.6 (CH), 134.1 (q), 136.5 (q), 145.1 (q), 146.5
(q). IR (film): 3468.5, 2959, 1770, 1609, 1515, 1488, 1447, 1365,
1273, 1243, 1036, 934 cm-¹. MS (ESI): m/z (%) = 343
(100) [M + H]+, 339
(8), 325 (17). Anal. Calcd for C20H23O5:
343.1545 [M + H+].
Found: 343.1551. The ¹H- and ¹³C
NMR data were in agreement with the literature values.²b(±)-Fragransin A2 (rac
-1, 12d): ¹H
NMR (300 MHz, CDCl3): δ = 1.05 (d, J = 6.3 Hz, 6 H, 3- and 4-CH3),
1.76 (m, 2 H, 3- and 4-H), 3.91 (s, 6 H, OCH3), 4.61
(d, J = 9.3 Hz, 2 H, 2- and
5-H), 5.55 (s, 2 H, OH), 6.78-6.94 (m, 6 H, Ar-H). ¹³C
NMR (75 MHz, CDCl3): δ = 13.8 (2 × CH3),
50.8 (CH), 51.1 (CH), 56.0 (OCH3), 88.2 (CH), 88.4 (CH),
106.6 (CH), 107.9 (CH), 108.6 (CH), 114.0 (CH), 119.4 (CH), 119.7 (CH),
134.1 (q), 136.9 (q), 145.1 (q), 146.9 (q). IR (film): 3451, 2958,
2926, 1772, 1607, 1515, 1460, 1247, 1036
cm-¹.
MS (ESI): m/z (%) = 343
(100) [M + H]+, 321
(6), 301 (8), 292 (10), 259 (60). Anal. Calcd for C20H23O5:
343.1545 [M - H+].
Found: 343.1536. The ¹H- and ¹³C-NMR
data were in agreement with the literature values.²b
2,5-Di(4-methoxyphenyl)-3-methyl-4-propyltetrahydro-furan
(12e): ¹H NMR (400
MHz, CDCl3): δ = 0.83 (m, 3 H, CH2CH2CH
3), 1.23 (m, 2 H, CH2CH
2CH3), 1.34 (d, J = 6.8 Hz,
3 H, 3-CH3), 1.51 (m, 2 H, CH
2CH2CH3),
2.09 (m, 1 H, 4-H), 2.45 (m, 1 H, 3-H), 3.82 (s, 6 H, OMe), 4.84
(d, J = 9.6 Hz, 2 H, 2- and
5-H), 6.90 (d, J = 8.4 Hz, 4
H, Ar-H), 7.26 (d, J = 8.8 Hz,
4 H, Ar-H). ¹³C NMR (100 MHz, CDCl3):
δ = 14.2
(CH3), 14.7 (CH3), 20.3 (CH2),
33.3 (CH2), 42.0 (CH), 51.7 (CH), 55.3 (OCH3),
85.2 (2 × CH), 114.0 (2 × CH),
128.3 (2 × CH), 140.2 (q), 160.0(q).
IR (film): 2958, 2339, 1773, 1613, 1516, 1462, 1299, 1251, 1171, 1034,
988, 833 cm-¹. MS (ESI): m/z (%) = 363
(3) [M + Na]+, 303
(4), 271 (100). Anal. Calcd for C22H28O3Na:
363.1931 [M + Na+].
Found: 363.1926.
2-(4-Methoxyphenyl)-3,4-dimethyl-5-phenyl
tetrahydro-furan (12g): ¹H
NMR (400 MHz, CDCl3): δ = 0.63 (d, J = 6.0 Hz, 3 H, 4-CH3),
1.04 (d, J = 6.0 Hz, 3 H, 3-CH3),
1.78 (m, 1 H, 3-H), 2.25 (m, 1 H, 4-H), 3.83 (s, 3 H, OCH3),
4.40 (d, J = 9.0 Hz, 1 H, 2-H),
5.17 (d, J = 9.0 Hz, 1 H, 5-H),
6.93 (d, J = 9.0 Hz, 2 H, Ar-H),
7.28-7.35 (m, 5 H, Ar-H), 7.43 (d,
J = 9.0
Hz, 2 H, Ar-H). ¹³C NMR (100 MHz, CDCl3): δ = 15.0
(CH3), 15.3 (CH3), 45.9 (CH), 48.5 (CH), 55.3
(OCH3), 83.0 (CH), 87.3 (CH), 113.8 (CH), 127.0 (CH),
127.8 (CH), 127.9 (CH), 132.9 (q), 141.0(q), 162.6 (q). IR (film):
2958, 2836, 1613, 1515, 1454, 1222, 1036, 825, 704 cm-¹.
MS (ESI): m/z (%) = 283
(100) [M + H]+, 265
(42), 177 (19), 149 (16), 121 (36). Anal. Calcd for C19H23O2:
283.1693 [M + H+]. Found:
283.1680.