Subscribe to RSS
DOI: 10.1055/s-0029-1218342
Organocatalytic Stereoselective Aziridination of Imines via Ammonium Ylides
Publication History
Publication Date:
05 November 2009 (online)
Abstract
Tertiary amine catalyzed reaction of imines with phenacyl bromide derivatives expeditiously affords functionalized aziridines in high yields and stereoselectivities in a one-pot process. Advantageously, the protocol precludes the preparation and isolation of ylides and their precursors in a separate step as they are formed in situ.
Key words
aziridines - imines - nitrogen heterocycles - organocatalysis - stereoselective reaction - ylides
- Supporting Information for this article is available online:
- Supporting Information
- For examples of bioactive natural aziridines, see:
-
1a
Hodgkinson TJ.Shipman M. Tetrahedron 2001, 57: 4467 -
1b
Coleman RS.Kong JS.Richardson TE. J. Am. Chem. Soc. 1999, 121: 9088 -
1c
Coleman RS.Li J.Navarro A. Angew. Chem. Int. Ed. 2001, 40: 1736 -
1d
Kasai M.Kono M. Synlett 1992, 778 -
1e
Remers WA. In The Chemistry of Antitumor, Antibiotics Vol. 1: Wiley Interscience; New York: 1979. p.242 -
1f
Katoh T.Itoh E.Yoshino T.Terashima S. Tetrahedron 1997, 53: 10229 -
1g
Sweeney JB. Chem. Soc. Rev. 2002, 31: 247 -
1h
Lefemine DV.Dann M.Barbatschi F.Hausmann WK.Zbinovsky V.Monnikendam P.Adam J.Bohonos N. J. Am. Chem. Soc. 1962, 84: 3184 -
1i
Gerhart F.Higgins W.Tardif C.Ducep J. J. Med. Chem. 1990, 33: 2157 - For examples of bioactive active non-natural aziridines as building blocks, see:
-
2a
Tanner ME.Miao S. Tetrahedron Lett. 1994, 35: 4073 -
2b
Gerhart F.Higgins W.Tardiff C.Ducep JB. J. Med. Chem. 1990, 33: 2157 -
2c
Skibo EB.Islam I.Heileman MJ.Schulz WG. J. Med. Chem. 1994, 37: 78 -
2d
Han I.Kohn H. J. Org. Chem. 1991, 56: 4648 - For examples of applications of aziridines as building blocks, see:
-
3a
Kumar KSA.Chaudhari VD.Dhavale DD. Org. Biomol. Chem. 2008, 6: 703 -
3b
Kumar KSA.Chaudhari VD.Puranik VG.Dhavale DD. Eur. J. Org. Chem. 2007, 4895 -
3c
Trost BM.Dong G. Org. Lett. 2007, 9: 2357 -
3d
Caldwell JJ.Craig D. Angew. Chem. Int. Ed. 2007, 46: 2631 -
3e
Crawley SL.Funk RL. Org. Lett. 2006, 8: 3995 -
3f
Banwell MG.Lupton DW. Org. Biomol. Chem. 2005, 3: 213 -
3g
Smith AB.Kim D. Org. Lett. 2004, 6: 1493 - For leading references on ring-opening reactions of aziridines, see:
-
4a
Tanner D. Angew. Chem., Int. Ed. Engl. 1994, 33: 599 -
4b
Pearson WH.Lian BW.Bergmeier SC. In Comprehensive Heterocyclic Chemistry II Vol. IA:Padwa A. , Ed.; Pergamon; Oxford: 1996. p.1-60 -
4c
McCoull W.Davis FA. Synthesis 2000, 1347 - For recent reviews on the synthesis of aziridines, see:
-
5a
Osborn HMI.Sweeney JB. Tetrahedron: Asymmetry 1997, 8: 1693 -
5b
Hou XL.Wu J.Fan R.Ding CH.Luo ZB.Dai LX. Synlett 2006, 181 -
5c
Watson IDG.Yu L.Yudin AK. Acc. Chem. Res. 2006, 39: 194 -
5d
Schaumann E.Kirschning A. Synlett 2007, 177 -
5e
Singh GS.D’Hooghe M.De Kimpe N. Chem. Rev. 2007, 107: 2080 - For recent references on the synthesis of aziridines from imines, see:
-
6a
Hodgson DM.Kloesges J.Evans B. Org. Lett. 2008, 10: 2781 -
6b
Denolf B.Leemans E.
De Kimpe -
6c
Sweeney JB.Cantrill AA.Drew MGB.McLaren AB.Thobhani S. Tetrahedron 2006, 62: 3694 -
6d
Sweeney JB.Cantrill AA.McLaren AB.Thobhani S. Tetrahedron 2006, 62: 3681 -
6e
Concellon JM.Bernad PL.Riego E.Garcia-Granda S.Forcen-Acebal A.
J. Org. Chem. 2001, 66: 2764 -
6f
Kim DY.Suh KH.Choi JS.Mang JY.Chang SK. Synth. Commun. 2000, 30: 87 -
6g
Cantrill AA.Hall LD.Jarvis AN.Osborn HMI.Raphy J.Sweeney JB. Chem. Commun. 1996, 2631 -
6h
Davis FA.Zhou P.Liang C.-H.Reddy RE. Tetrahedron: Asymmetry 1995, 6: 1511 -
6i
Concellon JM.Rodriguez-Sollo H.Bernad PL.Simal C. J. Org. Chem. 2009, 74: 2452 -
6j
Lu Z.Zhang Y.Wulff WD. J. Am. Chem. Soc. 2007, 129: 7185 - For the synthesis of aziridines from sulfur ylides, see:
-
7a
Gracia-Ruano JL.Fernandez I.del Prado-Catalina M.Alcudia-Cruz A. Tetrahedron: Asymmetry 1996, 7: 3407 -
7b
Higashiyma K.Matsumura M.Shiogama A.Yamaguchi T.Ohmiya S. Heterocycles 2002, 58: 85 -
7c
Corey EJ.Chaykovsky M. J. Am. Chem. Soc. 1965, 87: 1353 -
7d
Morton D.Pearson D.Field RA.Stockman RA. Synlett 2003, 1985 -
7e
Midura WH. Tetrahedron Lett. 2007, 48: 3907 -
7f
Aggarwal VK.Alonso E.Hynd G.Lydon KM.Palmer MJ.Porcelloni M.Studley JR. Angew. Chem. Int. Ed. 2001, 40: 1430 -
7g
Aggarwal VK.Stenson RA.Jones RVH.Fieldhouse R.Blacker J. Tetrahedron Lett. 2001, 42: 1587 -
7h
Morton D.Pearson D.Field RA.Stockman RA. Chem. Commun. 2006, 1833 - Though not an imine aziridination, Ishikawa and co-workers have reported an elegant method in which guanidinium ylides react with aldehydes to form aziridines stereo-selectively:
-
8a
Disadee W.Ishikawa T. J. Org. Chem. 2005, 70: 9399 -
8b
Haga T.Ishikawa T. Tetrahedron 2005, 61: 2857 - Some amine-imide NH-transfer reagents have been reported for the aziridination of chalcones, but they are not applicable to the aziridination of imines:
-
9a
Shen Y.-M.Zhao M.-X.Xu J.Shi Y. Angew. Chem. Int. Ed. 2006, 45: 8005 -
9b
Ikeda I.Machii Y.Okahara M. Synthesis 1980, 650 -
9c
Xu J.Jiao P. J. Chem. Soc., Perkin Trans. 1 2002, 1491 -
9d
Armstrong A.Carbery DR.Lamont SG.Pape AR.Wincewicz R. Synlett 2006, 2504 -
9e
Armstrong A.Baxter CA.Lamont SG.Pape AR.Wincewicz R. Org. Lett. 2007, 9: 351 -
10a
Papageorgiou CD.Ley SV.Gaunt MJ. Angew. Chem. Int. Ed. 2003, 42: 828 -
10b
Papageorgiou CD.Cubillo de Dios MA.Ley SV.Gaunt MJ. Angew. Chem. Int. Ed. 2004, 43: 4641 -
10c
Bremeyer N.Smith SC.Ley SV.Gaunt MJ. Angew. Chem. Int. Ed. 2004, 43: 2681 -
10d
Johansson CCC.Bremeyer N.Ley SV.Owen DR.Smith SC.Gaunt MJ. Angew. Chem. Int. Ed. 2006, 45: 6024 - For examples of our recent work on cyclization reactions, see:
-
11a
Yadav LDS.Kapoor R. J. Org. Chem. 2004, 69: 8118 -
11b
Yadav LDS.Kapoor R. Synlett 2005, 3055 -
11c
Yadav LDS.Yadav S.Rai VK. Green Chem. 2006, 8: 455 -
11d
Yadav LDS.Awasthi C.Rai VK.Rai A. Tetrahedron Lett. 2007, 48: 4899 -
11e
Yadav LDS.Rai A.Rai VK.Awasthi C. Tetrahedron 2008, 64: 1420 -
11f
Yadav LDS.Kapoor R. Synlett 2008, 2348 -
11g
Yadav LDS.Singh S.Rai VK. Green Chem. 2009, 11: 878 -
11h
Yadav LDS.Kapoor R. ; Synlett 2009, 1055 -
13a
Ma L.Jiao P.Zhang Q.Xu J. Tetrahedron: Asymmetry 2005, 16: 3718 -
13b
Ma L.Du D.-M.Xu J. J. Org. Chem. 2005, 70: 10155 - 14
Aggarwal VK.Alonso E.Bae I.Hynd G.Lydon KM.Palmer MJ.Patel M.Porcelloni M.Richardson J.Stenson RA.Studley JR.Vasse J.-L.Winn CL.
J. Am. Chem. Soc. 2003, 125: 10926 - 16
Xu J.Ma L.Jiao P. Chem. Commun. 2004, 1616
References and Notes
General Procedure
for the One-Pot Synthesis of Aziridines 3: A mixture of phenacyl
bromide 2 (1 mmol), DABCO (0.2 mmol), imine 1 (1 mmol), and Na2CO3 (1.5 mmol)
in MeCN (5 mL) was stirred at 80 ˚C for 19-24
h (Table
[²]
). After
completion of the reaction (monitored by TLC), it was quenched with
aq HCl (1 M) and extracted with EtOAc (3 × 10 mL). The
combined organic phases were washed with a sat. aq solution of NaHCO3,
dried over MgSO4, and concentrated under reduced pressure.
The crude product thus obtained was purified by silica gel column chromatography
using EtOAc-n-hexane (2:8) as
eluent to afford analytically pure sample of 3 (Table
[²]
). Characterization
Data of Representative Compounds:
Product
3 (Table 2, entry 2): ¹H NMR (400 MHz,
CDCl3): δ = 8.03 (d, J = 8.6
Hz, 2 H), 7.42-7.61 (m, 3 H), 7.20-7.23 (m, 4
H), 7.10 (d, J = 8.4 Hz, 2 H),
6.75 (d, J = 8.4 Hz, 2 H), 4.51
(d, J = 4.1 Hz, 1 H), 4.28 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3
H), 2.36 (s, 3 H). ¹³C NMR (100 MHz,
CDCl3): δ = 190.03, 160.30, 144.12,
136.29, 135.63, 132.63, 129.90, 129.23, 129.00, 128.61, 127.35,
127.21, 113.90, 55.60, 49.99, 47.04, 21.24. IR (KBr): 3051, 2847,
1685, 1602, 1583, 1514, 1456, 1331, 1151, 843, 741 cm-¹.
EIMS: m/z = 407 [M+].
Anal. Calcd for C23H21NO4S: C,
67.79; H, 5.19; N, 3.44. Found: C, 67.99; H, 5.45; N, 3.21. Product 3 (Table 2, entry 6): ¹H NMR
(400 MHz, CDCl3): δ = 8.05 (d, J = 8.5 Hz, 2 H), 7.85 (d, J = 8.9 Hz, 2 H), 7.44 (d, J = 8.9 Hz, 2 H), 7.24 (d, J = 8.5 Hz, 2 H), 7.12 (d, J = 8.3 Hz, 2 H), 6.78 (d, J = 8.3 Hz, 2 H), 4.54 (d, J = 4.1 Hz, 1 H), 4.30 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3
H), 2.37 (s, 3 H). ¹³C NMR (100 MHz,
CDCl3): δ = 190.06, 160.60, 138.00,
136.66, 133.33, 130.00, 129.28, 129.10, 128.64, 127.38, 127.25,
114.20, 114.16, 55.80, 50.03, 47.09, 21.28. IR (KBr): 3049, 2842,
1687, 1603, 1584, 1516, 1448, 1336, 1146, 848 cm-¹.
EIMS: m/z = 441 [M+].
Anal. Calcd for C23H20ClNO4S: C,
62.51; H, 4.56; N, 3.17. Found: C, 62.74; H, 4.29; N, 2.84. Product 3 (Table 2, entry 10): ¹H NMR
(400 MHz, CDCl3): δ = 8.01 (d, J = 8.6 Hz, 2 H), 7.70 (d, J = 8.4 Hz, 2 H), 7.20 (d, J = 8.6 Hz, 2 H), 7.08 (d, J = 8.5 Hz, 2 H), 6.75 (d, J = 8.4 Hz, 2 H), 6.73 (d, J = 8.5 Hz, 2 H), 4.50 (d, J = 4.1 Hz, 1 H), 4.28 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3
H), 3.70 (s, 3 H), 2.35 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3): δ = 190.00, 162.60,
160.00, 144.08, 136.25, 130.40, 129.10, 129.00, 128.50, 127.31,
127.18, 114.30, 113.30, 55.80, 55.10, 49.95, 47.00, 21.20. IR (KBr):
3057, 2847, 1677, 1602, 1577, 1514, 1457, 1334, 1148, 842 cm-¹.
EIMS: m/z = 437 [M+].
Anal. Calcd for C24H23NO5S: C,
65.89; H, 5.30; N, 3.20. Found: C, 65.62; H, 5.55; N, 2.87. Product 3 (Table 2, entry 14): ¹H
NMR (400 MHz, CDCl3): δ = 8.24 (d, J = 8.8 Hz, 2 H), 8.10 (d, J = 8.8 Hz, 2 H), 8.06 (d, J = 8.5 Hz, 2 H), 7.26 (d, J = 8.5 Hz, 2 H), 7.14 (d, J = 8.2 Hz, 2 H), 6.80 (d, J = 8.2 Hz, 2 H), 4.56 (d, J = 4.1 Hz, 1 H), 4.32 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3
H), 2.39 (s, 3 H). ¹³C NMR (100 MHz,
CDCl3): δ = 190.08, 170.00, 149.00,
144.19, 141.20, 136.36, 130.04, 129.90, 129.10, 127.41, 127.29,
123.00, 114.6, 56.01, 50.06, 47.12, 21.30. IR (KBr): 3064, 2853, 1683,
1603, 1584, 1512, 1453, 1338, 1150, 854 cm-¹.
EIMS: m/z = 452 [M+].
Anal. Calcd for C23H20N2O6S:
C, 61.05; H, 4.46; N, 6.19. Found: C, 61.37; H, 4.19; N, 6.47.
Chiral HPLC: enantiomeric excess (ee)
was determined by using a Chiracel OD 25 cm, 4.6 mm internal diameter column,
hexane-i-PrOH (88:12), flow:
1 mL min-¹, 30 ˚C,
λ = 250
nm. The enantiomers had retention times (t
R)
of 22.4 min (major) and 24.2 min (minor).