Synlett 2009(19): 3123-3126  
DOI: 10.1055/s-0029-1218342
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Organocatalytic Stereoselective Aziridination of Imines via Ammonium Ylides

Lal Dhar S. Yadav*, Ritu Kapoor, Garima
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India
Fax: +91(532)2460533; e-Mail: ldsyadav@hotmail.com;
Further Information

Publication History

Received 5 September 2009
Publication Date:
05 November 2009 (online)

Abstract

Tertiary amine catalyzed reaction of imines with phen­acyl bromide derivatives expeditiously affords functionalized aziridines in high yields and stereoselectivities in a one-pot process. Advantageously, the protocol precludes the preparation and isolation of ylides and their precursors in a separate step as they are formed in situ.

    References and Notes

  • For examples of bioactive natural aziridines, see:
  • 1a Hodgkinson TJ. Shipman M. Tetrahedron  2001,  57:  4467 
  • 1b Coleman RS. Kong JS. Richardson TE. J. Am. Chem. Soc.  1999,  121:  9088 
  • 1c Coleman RS. Li J. Navarro A. Angew. Chem. Int. Ed.  2001,  40:  1736 
  • 1d Kasai M. Kono M. Synlett  1992,  778 
  • 1e Remers WA. In The Chemistry of Antitumor, Antibiotics   Vol. 1:  Wiley Interscience; New York: 1979.  p.242 
  • 1f Katoh T. Itoh E. Yoshino T. Terashima S. Tetrahedron  1997,  53:  10229 
  • 1g Sweeney JB. Chem. Soc. Rev.  2002,  31:  247 
  • 1h Lefemine DV. Dann M. Barbatschi F. Hausmann WK. Zbinovsky V. Monnikendam P. Adam J. Bohonos N. J. Am. Chem. Soc.  1962,  84:  3184 
  • 1i Gerhart F. Higgins W. Tardif C. Ducep J. J. Med. Chem.  1990,  33:  2157 
  • For examples of bioactive active non-natural aziridines as building blocks, see:
  • 2a Tanner ME. Miao S. Tetrahedron Lett.  1994,  35:  4073 
  • 2b Gerhart F. Higgins W. Tardiff C. Ducep JB. J. Med. Chem.  1990,  33:  2157 
  • 2c Skibo EB. Islam I. Heileman MJ. Schulz WG. J. Med. Chem.  1994,  37:  78 
  • 2d Han I. Kohn H. J. Org. Chem.  1991,  56:  4648 
  • For examples of applications of aziridines as building blocks, see:
  • 3a Kumar KSA. Chaudhari VD. Dhavale DD. Org. Biomol. Chem.  2008,  6:  703 
  • 3b Kumar KSA. Chaudhari VD. Puranik VG. Dhavale DD. Eur. J. Org. Chem.  2007,  4895 
  • 3c Trost BM. Dong G. Org. Lett.  2007,  9:  2357 
  • 3d Caldwell JJ. Craig D. Angew. Chem. Int. Ed.  2007,  46:  2631 
  • 3e Crawley SL. Funk RL. Org. Lett.  2006,  8:  3995 
  • 3f Banwell MG. Lupton DW. Org. Biomol. Chem.  2005,  3:  213 
  • 3g Smith AB. Kim D. Org. Lett.  2004,  6:  1493 
  • For leading references on ring-opening reactions of aziridines, see:
  • 4a Tanner D. Angew. Chem., Int. Ed. Engl.  1994,  33: 599
  • 4b Pearson WH. Lian BW. Bergmeier SC. In Comprehensive Heterocyclic Chemistry II   Vol. IA:  Padwa A. , Ed.; Pergamon; Oxford: 1996.  p.1-60  
  • 4c McCoull W. Davis FA. Synthesis  2000,  1347 
  • For recent reviews on the synthesis of aziridines, see:
  • 5a Osborn HMI. Sweeney JB. Tetrahedron: Asymmetry  1997,  8:  1693 
  • 5b Hou XL. Wu J. Fan R. Ding CH. Luo ZB. Dai LX. Synlett  2006,  181 
  • 5c Watson IDG. Yu L. Yudin AK. Acc. Chem. Res.  2006,  39:  194 
  • 5d Schaumann E. Kirschning A. Synlett  2007,  177 
  • 5e Singh GS. D’Hooghe M. De Kimpe N. Chem. Rev.  2007,  107:  2080 
  • For recent references on the synthesis of aziridines from imines, see:
  • 6a Hodgson DM. Kloesges J. Evans B. Org. Lett.  2008,  10:  2781 
  • 6b Denolf B. Leemans E.
    De Kimpe
    N. J. Org. Chem.  2007,  72:  3211 
  • 6c Sweeney JB. Cantrill AA. Drew MGB. McLaren AB. Thobhani S. Tetrahedron  2006,  62:  3694 
  • 6d Sweeney JB. Cantrill AA. McLaren AB. Thobhani S. Tetrahedron  2006,  62:  3681 
  • 6e Concellon JM. Bernad PL. Riego E. Garcia-Granda S. Forcen-Acebal A.
    J. Org. Chem.  2001,  66:  2764 
  • 6f Kim DY. Suh KH. Choi JS. Mang JY. Chang SK. Synth. Commun.  2000,  30:  87 
  • 6g Cantrill AA. Hall LD. Jarvis AN. Osborn HMI. Raphy J. Sweeney JB. Chem. Commun.  1996,  2631 
  • 6h Davis FA. Zhou P. Liang C.-H. Reddy RE. Tetrahedron: Asymmetry  1995,  6:  1511 
  • 6i Concellon JM. Rodriguez-Sollo H. Bernad PL. Simal C. J. Org. Chem.  2009,  74:  2452 
  • 6j Lu Z. Zhang Y. Wulff WD. J. Am. Chem. Soc.  2007,  129:  7185 
  • For the synthesis of aziridines from sulfur ylides, see:
  • 7a Gracia-Ruano JL. Fernandez I. del Prado-Catalina M. Alcudia-Cruz A. Tetrahedron: Asymmetry  1996,  7:  3407 
  • 7b Higashiyma K. Matsumura M. Shiogama A. Yamaguchi T. Ohmiya S. Heterocycles  2002,  58:  85 
  • 7c Corey EJ. Chaykovsky M. J. Am. Chem. Soc.  1965,  87:  1353 
  • 7d Morton D. Pearson D. Field RA. Stockman RA. Synlett  2003,  1985 
  • 7e Midura WH. Tetrahedron Lett.  2007,  48:  3907 
  • 7f Aggarwal VK. Alonso E. Hynd G. Lydon KM. Palmer MJ. Porcelloni M. Studley JR. Angew. Chem. Int. Ed.  2001,  40:  1430 
  • 7g Aggarwal VK. Stenson RA. Jones RVH. Fieldhouse R. Blacker J. Tetrahedron Lett.  2001,  42:  1587 
  • 7h Morton D. Pearson D. Field RA. Stockman RA. Chem. Commun.  2006,  1833 
  • Though not an imine aziridination, Ishikawa and co-workers have reported an elegant method in which guanidinium ylides react with aldehydes to form aziridines stereo-selectively:
  • 8a Disadee W. Ishikawa T. J. Org. Chem.  2005,  70:  9399 
  • 8b Haga T. Ishikawa T. Tetrahedron  2005,  61:  2857 
  • Some amine-imide NH-transfer reagents have been reported for the aziridination of chalcones, but they are not applicable to the aziridination of imines:
  • 9a Shen Y.-M. Zhao M.-X. Xu J. Shi Y. Angew. Chem. Int. Ed.  2006,  45:  8005 
  • 9b Ikeda I. Machii Y. Okahara M. Synthesis  1980,  650 
  • 9c Xu J. Jiao P. J. Chem. Soc., Perkin Trans. 1  2002,  1491 
  • 9d Armstrong A. Carbery DR. Lamont SG. Pape AR. Wincewicz R. Synlett  2006,  2504 
  • 9e Armstrong A. Baxter CA. Lamont SG. Pape AR. Wincewicz R. Org. Lett.  2007,  9:  351 
  • 10a Papageorgiou CD. Ley SV. Gaunt MJ. Angew. Chem. Int. Ed.  2003,  42:  828 
  • 10b Papageorgiou CD. Cubillo de Dios MA. Ley SV. Gaunt MJ. Angew. Chem. Int. Ed.  2004,  43:  4641 
  • 10c Bremeyer N. Smith SC. Ley SV. Gaunt MJ. Angew. Chem. Int. Ed.  2004,  43:  2681 
  • 10d Johansson CCC. Bremeyer N. Ley SV. Owen DR. Smith SC. Gaunt MJ. Angew. Chem. Int. Ed.  2006,  45:  6024 
  • For examples of our recent work on cyclization reactions, see:
  • 11a Yadav LDS. Kapoor R. J. Org. Chem.  2004,  69:  8118 
  • 11b Yadav LDS. Kapoor R. Synlett  2005,  3055 
  • 11c Yadav LDS. Yadav S. Rai VK. Green Chem.  2006,  8:  455 
  • 11d Yadav LDS. Awasthi C. Rai VK. Rai A. Tetrahedron Lett.  2007,  48:  4899 
  • 11e Yadav LDS. Rai A. Rai VK. Awasthi C. Tetrahedron  2008,  64:  1420 
  • 11f Yadav LDS. Kapoor R. Synlett  2008,  2348 
  • 11g Yadav LDS. Singh S. Rai VK. Green Chem.  2009,  11:  878 
  • 11h Yadav LDS. Kapoor R. ; Synlett  2009,  1055 
  • 13a Ma L. Jiao P. Zhang Q. Xu J. Tetrahedron: Asymmetry  2005,  16:  3718 
  • 13b Ma L. Du D.-M. Xu J. J. Org. Chem.  2005,  70:  10155 
  • 14 Aggarwal VK. Alonso E. Bae I. Hynd G. Lydon KM. Palmer MJ. Patel M. Porcelloni M. Richardson J. Stenson RA. Studley JR. Vasse J.-L. Winn CL.
    J. Am. Chem. Soc.  2003,  125:  10926 
  • 16 Xu J. Ma L. Jiao P. Chem. Commun.  2004,  1616 
12

General Procedure for the One-Pot Synthesis of Aziridines 3: A mixture of phenacyl bromide 2 (1 mmol), DABCO (0.2 mmol), imine 1 (1 mmol), and Na2CO3 (1.5 mmol) in MeCN (5 mL) was stirred at 80 ˚C for 19-24 h (Table  [²] ). After completion of the reaction (monitored by TLC), it was quenched with aq HCl (1 M) and extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with a sat. aq solution of NaHCO3, dried over MgSO4, and concentrated under reduced pressure. The crude product thus obtained was purified by silica gel column chromatography using EtOAc-n-hexane (2:8) as eluent to afford analytically pure sample of 3 (Table  [²] ). Characterization Data of Representative Compounds:
Product 3 (Table 2, entry 2): ¹H NMR (400 MHz, CDCl3): δ = 8.03 (d, J = 8.6 Hz, 2 H), 7.42-7.61 (m, 3 H), 7.20-7.23 (m, 4 H), 7.10 (d, J = 8.4 Hz, 2 H), 6.75 (d, J = 8.4 Hz, 2 H), 4.51 (d, J = 4.1 Hz, 1 H), 4.28 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3 H), 2.36 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 190.03, 160.30, 144.12, 136.29, 135.63, 132.63, 129.90, 129.23, 129.00, 128.61, 127.35, 127.21, 113.90, 55.60, 49.99, 47.04, 21.24. IR (KBr): 3051, 2847, 1685, 1602, 1583, 1514, 1456, 1331, 1151, 843, 741 cm. EIMS: m/z = 407 [M+]. Anal. Calcd for C23H21NO4S: C, 67.79; H, 5.19; N, 3.44. Found: C, 67.99; H, 5.45; N, 3.21. Product 3 (Table 2, entry 6): ¹H NMR (400 MHz, CDCl3): δ = 8.05 (d, J = 8.5 Hz, 2 H), 7.85 (d, J = 8.9 Hz, 2 H), 7.44 (d, J = 8.9 Hz, 2 H), 7.24 (d, J = 8.5 Hz, 2 H), 7.12 (d, J = 8.3 Hz, 2 H), 6.78 (d, J = 8.3 Hz, 2 H), 4.54 (d, J = 4.1 Hz, 1 H), 4.30 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3 H), 2.37 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 190.06, 160.60, 138.00, 136.66, 133.33, 130.00, 129.28, 129.10, 128.64, 127.38, 127.25, 114.20, 114.16, 55.80, 50.03, 47.09, 21.28. IR (KBr): 3049, 2842, 1687, 1603, 1584, 1516, 1448, 1336, 1146, 848 cm. EIMS: m/z = 441 [M+]. Anal. Calcd for C23H20ClNO4S: C, 62.51; H, 4.56; N, 3.17. Found: C, 62.74; H, 4.29; N, 2.84. Product 3 (Table 2, entry 10): ¹H NMR (400 MHz, CDCl3): δ = 8.01 (d, J = 8.6 Hz, 2 H), 7.70 (d, J = 8.4 Hz, 2 H), 7.20 (d, J = 8.6 Hz, 2 H), 7.08 (d, J = 8.5 Hz, 2 H), 6.75 (d, J = 8.4 Hz, 2 H), 6.73 (d, J = 8.5 Hz, 2 H), 4.50 (d, J = 4.1 Hz, 1 H), 4.28 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3 H), 3.70 (s, 3 H), 2.35 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 190.00, 162.60, 160.00, 144.08, 136.25, 130.40, 129.10, 129.00, 128.50, 127.31, 127.18, 114.30, 113.30, 55.80, 55.10, 49.95, 47.00, 21.20. IR (KBr): 3057, 2847, 1677, 1602, 1577, 1514, 1457, 1334, 1148, 842 cm. EIMS: m/z = 437 [M+]. Anal. Calcd for C24H23NO5S: C, 65.89; H, 5.30; N, 3.20. Found: C, 65.62; H, 5.55; N, 2.87. Product 3 (Table 2, entry 14): ¹H NMR (400 MHz, CDCl3): δ = 8.24 (d, J = 8.8 Hz, 2 H), 8.10 (d, J = 8.8 Hz, 2 H), 8.06 (d, J = 8.5 Hz, 2 H), 7.26 (d, J = 8.5 Hz, 2 H), 7.14 (d, J = 8.2 Hz, 2 H), 6.80 (d, J = 8.2 Hz, 2 H), 4.56 (d, J = 4.1 Hz, 1 H), 4.32 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3 H), 2.39 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 190.08, 170.00, 149.00, 144.19, 141.20, 136.36, 130.04, 129.90, 129.10, 127.41, 127.29, 123.00, 114.6, 56.01, 50.06, 47.12, 21.30. IR (KBr): 3064, 2853, 1683, 1603, 1584, 1512, 1453, 1338, 1150, 854 cm. EIMS: m/z = 452 [M+]. Anal. Calcd for C23H20N2O6S: C, 61.05; H, 4.46; N, 6.19. Found: C, 61.37; H, 4.19; N, 6.47.

15

Chiral HPLC: enantiomeric excess (ee) was determined by using a Chiracel OD 25 cm, 4.6 mm internal diameter column, hexane-i-PrOH (88:12), flow: 1 mL min, 30 ˚C,
λ = 250 nm. The enantiomers had retention times (t R) of 22.4 min (major) and 24.2 min (minor).