Synlett 2009(19): 3115-3118  
DOI: 10.1055/s-0029-1218308
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Concise Synthesis of (2S,3R)-3-Hydroxy-2-phenylpiperidine: An Advanced Key Intermediate of Human Non-Peptide NK-1 Receptor Antagonists

Benoît Hélal, Franck Ferreira*, Candice Botuha, Fabrice Chemla*, Alejandro Pérez-Luna
UPMC-Univ Paris 06, CNRS UMR 7201, Institut Parisien de Chimie Moléculaire (FR 2769), Case 183, 4 Place Jussieu, 75005 Paris, France
Fax: +33(1)44277567; e-Mail: franck.ferreira@upmc.fr; e-Mail: fabrice.chemla@upmc.fr;
Further Information

Publication History

Received 24 July 2009
Publication Date:
23 October 2009 (online)

Abstract

The rapid, high-yielding synthesis of (2S,3R)-3-hydroxy-2-phenylpiperidine, a known advanced key intermediate of some non-peptide human NK-1 receptor antagonists such as (+)-CP-99,994, (+)-CP-122,721 and (+)-LP-733,060, is reported. This synthesis involves the stereoselective addition of racemic 3-(methoxymethoxy)allenylzinc bromide to enantiopure (R S,E)-N-2-benzylidene-2-methylpropane-2-sulfinamide and a ring-closing metathesis reaction as the key steps. Following this procedure, (2S,3R)-3-hydroxy-2-phenylpiperidine is obtained in seven steps in 56.2% overall yield.

    References and Notes

  • 1a Chang MM. Leeman SE. J. Biol. Chem.  1970,  245:  4784 
  • 1b von Euler US. Gaddum JH. J. Physiol.  1931,  72:  74 
  • 1c Nicoll RA. Schenker C. Leeman SE. Ann. Rev. Neurosci.  1980,  3:  227 
  • 2 Ebner K. Singewald N. Amino Acids  2006,  31:  251 
  • 3 Huston JP. Hasenöhrl RU. Boix F. Gerhardt P. Schwarting RK. Psychopharmacology  1993,  112:  147 
  • 4 Park SW. Yan YP. Satriotomo I. Vemuganti R. Dempsey RJ. J. Neurosurgery  2007,  107:  593 
  • 5a Bonham AC. Respir. Physiol.  1995,  101:  219 
  • 5b Payan DG. Ann. Rev. Med.  1989,  40:  341 
  • 6 Hesketh PJ. Supportive Care Cancer  2001,  9:  350 
  • 7 Moskowitz MA. Trends Pharmacol. Sci.  1992,  13:  307 
  • 8 Mantyh CR. Gates TS. Zimmerman RP. Welton ML. Passaro EP. Vigna SR. Maggio JE. Kruger L. Mantyh PW. Proc. Natl. Acad. Sci. U.S.A.  1988,  85:  3235 
  • 9a Zubrzycka M. Janecka A. Endocr. Regul.  2000,  34:  195 
  • 9b Cuello AC. Neuropharmacology  1987,  26:  971 
  • 10a Armour DR. Chung KML. Congreve M. Evans B. Guntrip S. Hubbard T. Kay C. Middlemiss D. Mordaunt JE. Pegg NA. Vinader MV. Ward P. Watson SP. Bioorg. Med. Chem. Lett.  1996,  6:  1015 
  • 10b Guard S. Wtason SP. Neurochem. Int.  1991,  18:  149 
  • 11 Desai MC. Lefkowitz SL. Thadeio PF. Longo KP. Snider RM. J. Med. Chem.  1992,  35:  4911 
  • 12 Zaman S. Woods AJ. Watson JW. Reynolds DJM. Andrews PL. Neuropharmacology  2000,  39:  316 
  • 13 McLean S. Ganong A. Seymour PA. Bryce DK. Crawford RT. Morrone J. Reynolds LS. Schmidt AW. Zorn S. Watson J. Fossa A. DePasquale M. Rosen T. Nagahisa A. Tsuchiya M. Heym J. J. Pharmacol. Exp. Ther.  1996,  277:  900 
  • 14 Harrison T. Williams BJ. Swain CJ. Ball RG. Bioorg. Med. Chem. Lett.  1994,  4:  2545 
  • 15a Kulagowski JJ. Curtis NR. Swain CJ. Williams BJ. Org. Lett.  2001,  3:  667 
  • 15b Baker R, Curtis NR, Elliott JM, Harrisson T, Hollingworth GJ, Jackson PS, Kulagowski JJ, Rupniak NM, Seward EM, Swain CJ, and Williams BJ. inventors; Use of NK-1 receptor antagonists for treating major depressive disorders with anxiety;  WO 98,24,441. 
  • 15c Baker R, Curtis NR, Elliott JM, Harrisson T, Hollingworth GJ, and Jackson PS. inventors; Spiro-piperidine derivatives and their use as therapeutic agents;  WO 97,49,710. 
  • 16a Ward P. Armour DC. Bays DE. Evans B. Giblin GMP. Heron N. Hubbard T. Liang K. Middlemiss D. Mordaunt J. Naylor A. Pegg NA. Vinader MV. Watson SP. Bountra C. Evans DC. J. Med. Chem.  1995,  38:  4985 
  • 16b Boks GJ. Tollenaere JP. Kroon J. Bioorg. Med. Chem.  1997,  5:  535 
  • For selected syntheses of (+)-CP-99,994, see:
  • 17a Liu R.-H. Fang K. Wang B. Xu M.-H. Lin G.-Q. J. Org. Chem.  2008,  73:  3307 
  • 17b Davis FA. Zhang Y. Li D. Tetrahedron Lett.  2007,  48:  7838 
  • 17c Huang P.-Q. Liu L.-X. Wei B.-G. Ruan Y.-P. Org. Lett.  2003,  5:  1927 
  • 17d Tsuritani N. Yamada K. Yoshikawa N. Shibasaki M. Chem. Lett.  2002,  276 
  • 17e Chandrasekhar S. Mohanty PK. Tetrahedron Lett.  1999,  40:  5071 
  • 17f Rosen T. Seeger TF. McLean S. Desai MC. G uarino KJ. Bryce D. Pratt K. Heym J. Chalabi PM. Windels JH. Roth RW. J. Med. Chem.  1993,  36:  3197 
  • For selected syntheses of (+)-LP-733,060, see:
  • 18a Davis FA. Ramachandar T. Tetrahedron Lett.  2008,  49:  870 
  • 18b Cherian SK. Kumar P. Tetrahedron: Asymmetry  2007,  18:  982 
  • 18c Kandula SRV. Kumar P. Tetrahedron: Asymmetry  2005,  15:  3579 
  • 18d Yoon Y.-J. Joo JE. Lee K.-Y. Kim Y.-H. Oh C.-Y. Ham W.-H. Tetrahedron Lett.  2005,  46:  739 
  • 18e Bhaskar G. Rao BV. Tetrahedron Lett.  2003,  44:  915 
  • For previous syntheses of 2 and its antipode, see:
  • 19a Cochi A. Burger B. Navarro C. Gomez Pardo D. Cossy J. Zhao Y. Cohen T. Synlett  2009,  2157 
  • 19b Takahashi K. Nakano H. Fujita R. Tetrahedron Lett.  2005,  46:  8927 
  • 19c Liu L.-X. Ruan Y.-P. Guo Z.-Q. Huang P.-Q. J. Org. Chem.  2004,  69:  6001 
  • 19d Calvez O. Langlois N. Tetrahedron Lett.  1999,  40:  7099 
  • 20 Yamazaki N. Atobe M. Kibayashi C. Tetrahedron Lett.  2002,  43:  7979 
  • 21a Séguin C. Ferreira F. Botuha C. Chemla F. Pérez-Luna A. J. Org. Chem.  2009,  74:  6986 
  • 21b Ferreira F. Botuha C. Chemla F. Pérez-Luna A. J. Org. Chem.  2009,  74:  2238 
  • 21c Voituriez A. Pérez-Luna A. Ferreira F. Botuha C. Chemla F. Org. Lett.  2009,  11:  931 
  • 21d Roy B. Pérez-Luna A. Ferreira F. Botuha C. Chemla F. Tetrahedron Lett.  2008,  49:  1534 
  • 21e Voituriez A. Ferreira F. Chemla F. J. Org. Chem.  2007,  72:  5358 
  • 21f Voituriez A. Ferreira F. Pérez-Luna A. Chemla F. Org. Lett.  2007,  9:  4705 
  • 21g Botuha C. Chemla F. Ferreira F. Pérez-Luna A. Roy B. New J. Chem.  2007,  31:  1552 
  • 21h Chemla F. Ferreira F. Gaucher X. Palais L. Synthesis  2007,  1235 
  • 21i Chemla F. Ferreira F. Synlett  2006,  2613 
  • 21j Palais L. Chemla F. Ferreira F. Synlett  2006,  1039 
  • 21k Ferreira F. Audouin M. Chemla F. Chem. Eur. J.  2005,  11:  5269 
  • 21l Chemla F. Ferreira F. J. Org. Chem.  2004,  69:  8244 
  • 21m Ferreira F. Denichoux A. Chemla F. Bejjani J. Synlett  2004,  2051 
  • 21n Chemla F. Ferreira F. Synlett  2004,  983 
  • 21o Ferreira F. Herse C. Riguet E. Normant JF. Tetrahedron Lett.  2000,  41:  1733 
  • 22a Balasubramanian T. Hassner A. Tetrahedron: Asymmetry  1998,  9:  2201 
  • 22b Kumareswaran R. Hassner A. Tetrahedron: Asymmetry  2001,  12:  2269 
  • For leading references on N-tert-butylsulfinyl imines, see:
  • 23a Ferreira F. Botuha C. Chemla F. Pérez-Luna A. Chem. Soc. Rev.  2009,  38:  1162 
  • 23b Morton D. Stockman RA. Tetrahedron  2006,  62:  8869 
  • 23c Weix DJ. Ellman JA. Org. Synth.  2005,  82:  157 
  • 23d Ellman JA. Pure Appl. Chem.  2003,  75:  39 
  • 23e Ellman JA. Owens TD. Tang TP. Acc. Chem. Res.  2002,  35:  984 
  • 23f Cogan DA. Ellman JA. J. Am. Chem. Soc.  1999,  121:  268 
  • 23g Cogan DA. Liu G. Kim K. Backes BJ. Ellman JA. J. Am. Chem. Soc.  1998,  120:  8011 
  • 23h Liu G. Cogan DA. Ellman JA. J. Am. Chem. Soc.  1997,  119:  9913 
24

Procedure for the formation of 5: Under a nitrogen atmosphere, to a stirred solution of 3-[(methoxymethoxy)-prop-1-ynyl]trimethylsilane (8.40 mL, 48.00 mmol) and TMEDA (0.66 mL, 4.80 mmol) in anhydrous Et2O (400 mL) at -80 ˚C, was added dropwise s-BuLi (1.3 M in cyclo-hexane-hexane, 92:8, 36.90 mL, 48.00 mmol). The resulting clear orange mixture was stirred for 1 h at -80 ˚C and then a solution of ZnBr2 (1 M in Et2O, 48.00 mL, 48.00 mmol) was added. The resulting white slurry of allenylzinc (±)-3 was stirred at -80 ˚C for an additional 20 min before imine 4 (2.51 g, 12.00 mmol) in anhydrous Et2O (48 mL) was added dropwise. The mixture was stirred for 1 h at -80 ˚C, then HCl (1 M, 200 mL) was added and the mixture was warmed to room temperature. The layers were separated and the aqueous phase was extracted with Et2O (3 × 200 mL). The combined organic layers were washed with sat. NaHCO3 (60 mL), water (2 × 120 mL) and brine (120 mL), dried over MgSO4 and concentrated in vacuo. The residual oil was purified by flash chromatography on silica gel (EtOAc-cyclohexane, 20→50%) to produce the desired compound 5 (4.32 g, 94%) as a pale-yellow solid. The physical and spectroscopic data of 5 were in good agreement with those previously reported for its antipode.²¹h

25

Procedure for the formation of 8: Under an argon atmosphere, to a stirred solution of 7 (1.12 g, 3.20 mmol) in anhydrous CH2Cl2 (1 L), was added Grubbs II catalyst (109 mg, 0.128 mmol). After 20 h stirring at 40 ˚C, additional Grubbs II catalyst (109 mg, 0.128 mmol) was added. The mixture was stirred for an additional 20 h and then cooled to room temperature. Removal of the solvent in vacuo gave a dark oil, which was purified by flash chromatography on silica gel (EtOAc-cyclohexane, 30→50%) to yield 8 (984 mg, 95%) as a brown oil; [α] d ²0 +13.4 (c 1.11, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 7.43-7.26 (m, 5 H), 6.11-6.02 (m, 2 H), 4.78 (AB system, J = 7.0 Hz, 1 H), 4.74 (AB system, J = 7.0 Hz, 1 H), 4.62 (d, J = 3.3 Hz, 1 H), 4.51-4.47 (m, 1 H), 3.77-3.60 (m, 2 H), 3.36 (s, 3 H), 1.18 (s, 9 H). ¹³C NMR (100 MHz, CDCl3): δ = 137.7, 129.4, 129.3, 128.4, 128.2, 127.8, 125.3, 95.0, 71.3, 63.8, 59.3, 55.51, 55.50, 40.1, 23.2. IR (ATR diamond): 3033, 2948, 2887, 1657, 1601, 1028, 699 cm. HRMS (ESI): m/z [M + H+] calcd for C17H26NO3S: 324.1628; found: 326.1620.

26

Procedure for the formation of 9: To a solution of 8 (1.35 g, 4.18 mmol) in absolute MeOH (100 mL), Raney Ni (5 spatulas) was added. The flask was flushed with H2 (3×). After 16 h stirring at room temperature under 1 atm of H2, the reaction mixture was filtered through a short pad of flash silica gel (EtOAc-cyclohexane, 30%). The solvents were removed and the residue was filtered through a short pad of flash silica gel eluting with EtOAc. Removal of the solvent gave 9 (1.23 g, 91%) as a colorless viscous oil; [α] d ²0 +105.3 (c 0.82, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 7.46 (d, J = 8.0 Hz, 2 H), 7.40 (t, J = 8.0 Hz, 2 H), 7.31-7.26 (m, 1 H), 4.63 (AB system, J = 6.8 Hz, 1 H), 4.57 (AB system, J = 6.8 Hz, 1 H), 4.39 (d, J = 5.0 Hz, 1 H), 4.14-4.09 (m, 1 H), 3.43 (ddd, J = 13.1, 9.4, 3.5 Hz, 1 H), 3.31-3.22 (m, 1 H), 3.27 (s, 3 H), 2.02-1.91 (m, 1 H), 1.86-1.77 (m, 1 H), 1.76-1.65 (m, 1 H), 1.61-1.51 (m, 1 H), 1.18 (s, 9 H). ¹³C NMR (100 MHz, CDCl3): δ = 138.1, 128.6, 128.1, 127.3, 94.6, 74.6, 64.6, 59.6, 55.4, 41.1, 27.2, 23.4, 21.3. IR (ATR diamond): 3059, 3028, 2927, 2862, 1601, 1032, 914 cm. HRMS (ESI): m/z [M + H+] calcd for C17H28NO3S: 326.1784; found: 326.1768.