Subscribe to RSS
DOI: 10.1055/s-0029-1218308
Concise Synthesis of (2S,3R)-3-Hydroxy-2-phenylpiperidine: An Advanced Key Intermediate of Human Non-Peptide NK-1 Receptor Antagonists
Publication History
Publication Date:
23 October 2009 (online)
Abstract
The rapid, high-yielding synthesis of (2S,3R)-3-hydroxy-2-phenylpiperidine, a known advanced key intermediate of some non-peptide human NK-1 receptor antagonists such as (+)-CP-99,994, (+)-CP-122,721 and (+)-LP-733,060, is reported. This synthesis involves the stereoselective addition of racemic 3-(methoxymethoxy)allenylzinc bromide to enantiopure (R S,E)-N-2-benzylidene-2-methylpropane-2-sulfinamide and a ring-closing metathesis reaction as the key steps. Following this procedure, (2S,3R)-3-hydroxy-2-phenylpiperidine is obtained in seven steps in 56.2% overall yield.
Key words
metathesis - piperidines - ring-closure - stereoselective synthesis - zinc
-
1a
Chang MM.Leeman SE. J. Biol. Chem. 1970, 245: 4784 -
1b
von Euler US.Gaddum JH. J. Physiol. 1931, 72: 74 -
1c
Nicoll RA.Schenker C.Leeman SE. Ann. Rev. Neurosci. 1980, 3: 227 - 2
Ebner K.Singewald N. Amino Acids 2006, 31: 251 - 3
Huston JP.Hasenöhrl RU.Boix F.Gerhardt P.Schwarting RK. Psychopharmacology 1993, 112: 147 - 4
Park SW.Yan YP.Satriotomo I.Vemuganti R.Dempsey RJ. J. Neurosurgery 2007, 107: 593 -
5a
Bonham AC. Respir. Physiol. 1995, 101: 219 -
5b
Payan DG. Ann. Rev. Med. 1989, 40: 341 - 6
Hesketh PJ. Supportive Care Cancer 2001, 9: 350 - 7
Moskowitz MA. Trends Pharmacol. Sci. 1992, 13: 307 - 8
Mantyh CR.Gates TS.Zimmerman RP.Welton ML.Passaro EP.Vigna SR.Maggio JE.Kruger L.Mantyh PW. Proc. Natl. Acad. Sci. U.S.A. 1988, 85: 3235 -
9a
Zubrzycka M.Janecka A. Endocr. Regul. 2000, 34: 195 -
9b
Cuello AC. Neuropharmacology 1987, 26: 971 -
10a
Armour DR.Chung KML.Congreve M.Evans B.Guntrip S.Hubbard T.Kay C.Middlemiss D.Mordaunt JE.Pegg NA.Vinader MV.Ward P.Watson SP. Bioorg. Med. Chem. Lett. 1996, 6: 1015 -
10b
Guard S.Wtason SP. Neurochem. Int. 1991, 18: 149 - 11
Desai MC.Lefkowitz SL.Thadeio PF.Longo KP.Snider RM. J. Med. Chem. 1992, 35: 4911 - 12
Zaman S.Woods AJ.Watson JW.Reynolds DJM.Andrews PL. Neuropharmacology 2000, 39: 316 - 13
McLean S.Ganong A.Seymour PA.Bryce DK.Crawford RT.Morrone J.Reynolds LS.Schmidt AW.Zorn S.Watson J.Fossa A.DePasquale M.Rosen T.Nagahisa A.Tsuchiya M.Heym J. J. Pharmacol. Exp. Ther. 1996, 277: 900 - 14
Harrison T.Williams BJ.Swain CJ.Ball RG. Bioorg. Med. Chem. Lett. 1994, 4: 2545 -
15a
Kulagowski JJ.Curtis NR.Swain CJ.Williams BJ. Org. Lett. 2001, 3: 667 -
15b
Baker R,Curtis NR,Elliott JM,Harrisson T,Hollingworth GJ,Jackson PS,Kulagowski JJ,Rupniak NM,Seward EM,Swain CJ, andWilliams BJ. inventors; Use of NK-1 receptor antagonists for treating major depressive disorders with anxiety; WO 98,24,441. -
15c
Baker R,Curtis NR,Elliott JM,Harrisson T,Hollingworth GJ, andJackson PS. inventors; Spiro-piperidine derivatives and their use as therapeutic agents; WO 97,49,710. -
16a
Ward P.Armour DC.Bays DE.Evans B.Giblin GMP.Heron N.Hubbard T.Liang K.Middlemiss D.Mordaunt J.Naylor A.Pegg NA.Vinader MV.Watson SP.Bountra C.Evans DC. J. Med. Chem. 1995, 38: 4985 -
16b
Boks GJ.Tollenaere JP.Kroon J. Bioorg. Med. Chem. 1997, 5: 535 - For selected syntheses of (+)-CP-99,994, see:
-
17a
Liu R.-H.Fang K.Wang B.Xu M.-H.Lin G.-Q. J. Org. Chem. 2008, 73: 3307 -
17b
Davis FA.Zhang Y.Li D. Tetrahedron Lett. 2007, 48: 7838 -
17c
Huang P.-Q.Liu L.-X.Wei B.-G.Ruan Y.-P. Org. Lett. 2003, 5: 1927 -
17d
Tsuritani N.Yamada K.Yoshikawa N.Shibasaki M. Chem. Lett. 2002, 276 -
17e
Chandrasekhar S.Mohanty PK. Tetrahedron Lett. 1999, 40: 5071 -
17f
Rosen T.Seeger TF.McLean S.Desai MC.G uarino KJ.Bryce D.Pratt K.Heym J.Chalabi PM.Windels JH.Roth RW. J. Med. Chem. 1993, 36: 3197 - For selected syntheses of (+)-LP-733,060, see:
-
18a
Davis FA.Ramachandar T. Tetrahedron Lett. 2008, 49: 870 -
18b
Cherian SK.Kumar P. Tetrahedron: Asymmetry 2007, 18: 982 -
18c
Kandula SRV.Kumar P. Tetrahedron: Asymmetry 2005, 15: 3579 -
18d
Yoon Y.-J.Joo JE.Lee K.-Y.Kim Y.-H.Oh C.-Y.Ham W.-H. Tetrahedron Lett. 2005, 46: 739 -
18e
Bhaskar G.Rao BV. Tetrahedron Lett. 2003, 44: 915 - For previous syntheses of 2 and its antipode, see:
-
19a
Cochi A.Burger B.Navarro C.Gomez Pardo D.Cossy J.Zhao Y.Cohen T. Synlett 2009, 2157 -
19b
Takahashi K.Nakano H.Fujita R. Tetrahedron Lett. 2005, 46: 8927 -
19c
Liu L.-X.Ruan Y.-P.Guo Z.-Q.Huang P.-Q. J. Org. Chem. 2004, 69: 6001 -
19d
Calvez O.Langlois N. Tetrahedron Lett. 1999, 40: 7099 - 20
Yamazaki N.Atobe M.Kibayashi C. Tetrahedron Lett. 2002, 43: 7979 -
21a
Séguin C.Ferreira F.Botuha C.Chemla F.Pérez-Luna A. J. Org. Chem. 2009, 74: 6986 -
21b
Ferreira F.Botuha C.Chemla F.Pérez-Luna A. J. Org. Chem. 2009, 74: 2238 -
21c
Voituriez A.Pérez-Luna A.Ferreira F.Botuha C.Chemla F. Org. Lett. 2009, 11: 931 -
21d
Roy B.Pérez-Luna A.Ferreira F.Botuha C.Chemla F. Tetrahedron Lett. 2008, 49: 1534 -
21e
Voituriez A.Ferreira F.Chemla F. J. Org. Chem. 2007, 72: 5358 -
21f
Voituriez A.Ferreira F.Pérez-Luna A.Chemla F. Org. Lett. 2007, 9: 4705 -
21g
Botuha C.Chemla F.Ferreira F.Pérez-Luna A.Roy B. New J. Chem. 2007, 31: 1552 -
21h
Chemla F.Ferreira F.Gaucher X.Palais L. Synthesis 2007, 1235 -
21i
Chemla F.Ferreira F. Synlett 2006, 2613 -
21j
Palais L.Chemla F.Ferreira F. Synlett 2006, 1039 -
21k
Ferreira F.Audouin M.Chemla F. Chem. Eur. J. 2005, 11: 5269 -
21l
Chemla F.Ferreira F. J. Org. Chem. 2004, 69: 8244 -
21m
Ferreira F.Denichoux A.Chemla F.Bejjani J. Synlett 2004, 2051 -
21n
Chemla F.Ferreira F. Synlett 2004, 983 -
21o
Ferreira F.Herse C.Riguet E.Normant JF. Tetrahedron Lett. 2000, 41: 1733 -
22a
Balasubramanian T.Hassner A. Tetrahedron: Asymmetry 1998, 9: 2201 -
22b
Kumareswaran R.Hassner A. Tetrahedron: Asymmetry 2001, 12: 2269 - For leading references on N-tert-butylsulfinyl imines, see:
-
23a
Ferreira F.Botuha C.Chemla F.Pérez-Luna A. Chem. Soc. Rev. 2009, 38: 1162 -
23b
Morton D.Stockman RA. Tetrahedron 2006, 62: 8869 -
23c
Weix DJ.Ellman JA. Org. Synth. 2005, 82: 157 -
23d
Ellman JA. Pure Appl. Chem. 2003, 75: 39 -
23e
Ellman JA.Owens TD.Tang TP. Acc. Chem. Res. 2002, 35: 984 -
23f
Cogan DA.Ellman JA. J. Am. Chem. Soc. 1999, 121: 268 -
23g
Cogan DA.Liu G.Kim K.Backes BJ.Ellman JA. J. Am. Chem. Soc. 1998, 120: 8011 -
23h
Liu G.Cogan DA.Ellman JA. J. Am. Chem. Soc. 1997, 119: 9913
References and Notes
Procedure for the formation of 5: Under a nitrogen atmosphere, to a stirred solution of 3-[(methoxymethoxy)-prop-1-ynyl]trimethylsilane (8.40 mL, 48.00 mmol) and TMEDA (0.66 mL, 4.80 mmol) in anhydrous Et2O (400 mL) at -80 ˚C, was added dropwise s-BuLi (1.3 M in cyclo-hexane-hexane, 92:8, 36.90 mL, 48.00 mmol). The resulting clear orange mixture was stirred for 1 h at -80 ˚C and then a solution of ZnBr2 (1 M in Et2O, 48.00 mL, 48.00 mmol) was added. The resulting white slurry of allenylzinc (±)-3 was stirred at -80 ˚C for an additional 20 min before imine 4 (2.51 g, 12.00 mmol) in anhydrous Et2O (48 mL) was added dropwise. The mixture was stirred for 1 h at -80 ˚C, then HCl (1 M, 200 mL) was added and the mixture was warmed to room temperature. The layers were separated and the aqueous phase was extracted with Et2O (3 × 200 mL). The combined organic layers were washed with sat. NaHCO3 (60 mL), water (2 × 120 mL) and brine (120 mL), dried over MgSO4 and concentrated in vacuo. The residual oil was purified by flash chromatography on silica gel (EtOAc-cyclohexane, 20→50%) to produce the desired compound 5 (4.32 g, 94%) as a pale-yellow solid. The physical and spectroscopic data of 5 were in good agreement with those previously reported for its antipode.²¹h
25Procedure for the formation of 8: Under an argon atmosphere, to a stirred solution of 7 (1.12 g, 3.20 mmol) in anhydrous CH2Cl2 (1 L), was added Grubbs II catalyst (109 mg, 0.128 mmol). After 20 h stirring at 40 ˚C, additional Grubbs II catalyst (109 mg, 0.128 mmol) was added. The mixture was stirred for an additional 20 h and then cooled to room temperature. Removal of the solvent in vacuo gave a dark oil, which was purified by flash chromatography on silica gel (EtOAc-cyclohexane, 30→50%) to yield 8 (984 mg, 95%) as a brown oil; [α] d ²0 +13.4 (c 1.11, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 7.43-7.26 (m, 5 H), 6.11-6.02 (m, 2 H), 4.78 (AB system, J = 7.0 Hz, 1 H), 4.74 (AB system, J = 7.0 Hz, 1 H), 4.62 (d, J = 3.3 Hz, 1 H), 4.51-4.47 (m, 1 H), 3.77-3.60 (m, 2 H), 3.36 (s, 3 H), 1.18 (s, 9 H). ¹³C NMR (100 MHz, CDCl3): δ = 137.7, 129.4, 129.3, 128.4, 128.2, 127.8, 125.3, 95.0, 71.3, 63.8, 59.3, 55.51, 55.50, 40.1, 23.2. IR (ATR diamond): 3033, 2948, 2887, 1657, 1601, 1028, 699 cm-¹. HRMS (ESI): m/z [M + H+] calcd for C17H26NO3S: 324.1628; found: 326.1620.
26Procedure for the formation of 9: To a solution of 8 (1.35 g, 4.18 mmol) in absolute MeOH (100 mL), Raney Ni (5 spatulas) was added. The flask was flushed with H2 (3×). After 16 h stirring at room temperature under 1 atm of H2, the reaction mixture was filtered through a short pad of flash silica gel (EtOAc-cyclohexane, 30%). The solvents were removed and the residue was filtered through a short pad of flash silica gel eluting with EtOAc. Removal of the solvent gave 9 (1.23 g, 91%) as a colorless viscous oil; [α] d ²0 +105.3 (c 0.82, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 7.46 (d, J = 8.0 Hz, 2 H), 7.40 (t, J = 8.0 Hz, 2 H), 7.31-7.26 (m, 1 H), 4.63 (AB system, J = 6.8 Hz, 1 H), 4.57 (AB system, J = 6.8 Hz, 1 H), 4.39 (d, J = 5.0 Hz, 1 H), 4.14-4.09 (m, 1 H), 3.43 (ddd, J = 13.1, 9.4, 3.5 Hz, 1 H), 3.31-3.22 (m, 1 H), 3.27 (s, 3 H), 2.02-1.91 (m, 1 H), 1.86-1.77 (m, 1 H), 1.76-1.65 (m, 1 H), 1.61-1.51 (m, 1 H), 1.18 (s, 9 H). ¹³C NMR (100 MHz, CDCl3): δ = 138.1, 128.6, 128.1, 127.3, 94.6, 74.6, 64.6, 59.6, 55.4, 41.1, 27.2, 23.4, 21.3. IR (ATR diamond): 3059, 3028, 2927, 2862, 1601, 1032, 914 cm-¹. HRMS (ESI): m/z [M + H+] calcd for C17H28NO3S: 326.1784; found: 326.1768.