Synlett 2009(18): 2953-2956  
DOI: 10.1055/s-0029-1218266
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Access to α-Functionalized Glycine Derivatives with Arylboronic Acid via Imino Amides

Liang Zhao, Xiaohong Liao, Chao-Jun Li*
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
Fax: +1(514)3983797; e-Mail: cj.li@McGill.ca;
Further Information

Publication History

Received 4 August 2009
Publication Date:
08 October 2009 (online)

Abstract

An efficient approach was developed for the α-arylation of imino amides with arylboronic acids. Different substrates were examined for this arylation reaction. For the α-arylation of N-phenylimino amide, due to the electron-withdrawing properties of the phenyl group, the tautomerization between the amide and the iminol is more difficult. Thus, low reaction rate and low conversion were observed. This phenomenon supported our previously proposed mechanism for the arylation of α-amino acid derivatives. Meanwhile, this method provides an alternative approach for the synthesis of α-functionalized glycine derivatives.

    References

  • 1a Nagarajan R. Antimicrob. Agents Chemother.  1991,  35:  605 
  • 1b Perkins HR. Pharmacol. Ther.  1982,  16:  181 
  • 1c Williams DH. Acc. Chem. Res.  1984,  17:  364 
  • 2a Connon SJ. Angew. Chem. Int. Ed.  2008,  47:  1176 
  • 2b Groger H. Chem. Rev.  2003,  103:  2795 
  • 2c Yet L. Angew. Chem. Int. Ed.  2001,  40:  875 
  • 3a Dömling A. Ugi I. Angew. Chem. Int. Ed.  2000,  39:  3169 
  • 3b Ugi I. Angew. Chem.  1959,  71:  386 
  • 3c Ugi I. Angew. Chem., Int. Ed. Engl.  1962,  1:  8 
  • 3d Ugi I. Steinbruckner C. Angew. Chem.  1960,  72:  267 
  • 4a For a comprehensive review on Petasis reaction, see: Batey RA. In Boronic Acids   Hall DG. Wiley-VCH; Weinheim: 2005.  p.279-304  
  • 4b Petasis NA. Akritopoulou I. Tetrahedron Lett.  1993,  34:  583 
  • 4c Petasis NA. Zavialov IA. J. Am. Chem. Soc.  1997,  119:  445 
  • 4d Petasis NA. Zavialov IA. J. Am. Chem. Soc.  1998,  120:  11798 
  • 4e Petasis NA. Goodman A. Zavialov IA. Tetrahedron Lett.  1997,  53:  16463 
  • 4f Naskar D. Roy A. Seibel WL. Tetrahedron Lett.  2003,  44:  8861 
  • 4g Koolmeister T. Sodergren M. Tetrahedron Lett.  2002,  43:  5969 
  • For other methods to access arylation/allylation of α-amino acids from our laboratory, see:
  • 5a Huang T. Li C.-J. Tetrahedron Lett.  2000,  41:  6715 
  • 5b Huang T. Li C.-J. Tetrahedron Lett.  2000,  41:  9747 
  • 5c Huang TS. Li C.-J. Org. Lett.  2001,  3:  2037 
  • 5d Huang TS. Keh CCK. Li C.-J. Chem. Commun.  2002,  2440 
  • 6a Wei DJ. Shi YL. Ellman JA. J. Am. Chem. Soc.  2005,  127:  1092 
  • 6b Dai HX. Lu XY. Org. Lett.  2007,  9:  3077 
  • 6c Kuriyama M. Soeta T. Hao XY. Chen O. Tomioka K. J. Am. Chem. Soc.  2004,  126:  8128 
  • 6d Fagnou K. Lautens M. Chem. Rev.  2003,  103:  169 
  • 7a Krug C. Hartwig JF. Organometallics  2004,  23:  4594 
  • 7b Krug C. Hartwig JF. J. Am. Chem. Soc.  2004,  126:  2694 
  • 7c Ueura K. Miyamura S. Satoh T. Miura M. J. Organomet. Chem.  2006,  691:  2821 
  • 7d Vilaivan T. Bhanthumnavin W. Sritana-Anant Y. Curr. Org. Chem.  2005,  9:  1315 
  • 7e Youn SW. Song J.-H. Jung D.-I. J. Org. Chem.  2008,  73:  5658 
  • 7f Yu A. Wu Y. Cheng B. Wei K. Li J. Adv. Synth. Catal.  2009,  351:  767 
  • 7g Ding R. Zhao CH. Chen YJ. Liu L. Wang D. Li C.-J. Tetrahedron Lett.  2004,  45:  2995 
  • 8a Lou S. Schaus SE. J. Am. Chem. Soc.  2008,  130:  6922 
  • 8b Yamaoka Y. Miyabe H. Takemoto Y. J. Am. Chem. Soc.  2007,  129:  6686 
  • 8c Basle O. Li C.-J. Org. Lett.  2008,  10:  3661 
  • 8d Selander N. Kipke A. Sebelius S. Szabo KJ. J. Am. Chem. Soc.  2007,  129:  13723 
  • 9 Zhao L. Basle O. Li C.-J. Proc. Natl. Acad. Sci. U.S.A.  2009,  106:  4106 
  • 10 Chen W. Liu Y. Chen Z. Eur. J. Org. Chem.  2005,  1665 
  • 11 Bolton GL, Bowles DM, Doyles DC, Howard WAJ, Hutchings RH, Kennedy RM, Park WK.-C, Poel T.-J, and Song Y. inventors; US  2005239857. 
  • 12 Pan SC. List B. Angew. Chem. Int. Ed.  2008,  47:  3622