Synlett 2009(18): 2919-2923  
DOI: 10.1055/s-0029-1218013
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Thieme Journal Awardees - Where Are They Now? On Cobalt-Catalyzed Biaryl Coupling Reactions

Matthias Mayer, Waldemar Maximilian Czaplik, Axel Jacobi von Wangelin*
Department of Chemistry, University of Cologne, Greinstr. 4, 50939 Köln, Germany
Fax: +49(221)4705057; e-Mail: axel.jacobi@uni-koeln.de;
Further Information

Publication History

Received 14 August 2009
Publication Date:
08 October 2009 (online)

Abstract

An operationally simple biaryl coupling reaction has been developed. The underlying domino process involves in situ Grignard formation from aryl bromides and subsequent homocoupling with catalytic CoCl2 and 1 bar synthetic air as terminal oxidant.

    References and Notes

  • 1a Cepanec I. Synthesis of Biaryls   Elsevier; Oxford: 2004. 
  • 1b Pu L. Chem. Rev.  1998,  98:  2405 
  • 1c Bringmann G. Price Mortimer AJ. Keller PA. Gresser MJ. Garner J. Breuning M. Angew. Chem. Int. Ed.  2005,  44:  5384 ; Angew. Chem. 2005, 117, 5518
  • 1d Kirsch P. Bremer M. Angew. Chem. Int. Ed.  2000,  39:  4216 ; Angew. Chem. 2000, 112, 4384
  • 2a Metal-Catalyzed Cross-Coupling Reactions   2nd ed.:  de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004. 
  • 2b Hassan J. Svignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev.  2002,  102:  1359 
  • 2c Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed.  2005,  44:  4442 ; Angew. Chem. 2005, 117, 4516
  • 2d Zapf A. Beller M. Top. Catal.  2002,  19:  101 
  • 3a Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 3b Molander GA. Ellis N. Acc. Chem. Res.  2007,  40:  275 
  • 4 Farina V. Krishnamurthy V. Scott WJ. Org. React.  1997,  50:  1 
  • 5 Negishi E. Acc. Chem. Res.  1982,  15:  340 
  • Selected examples for aryl-aryl coupling reactions using Grignard reagents:
  • 6a Tamao K. Sumitani K. Kumada M. J. Am. Chem. Soc.  1972,  94:  4374 
  • 6b Corriu RJP. Masse JP. J. Chem. Soc., Chem. Commun.  1972,  144 
  • 6c Martin R. Buchwald SL. J. Am. Chem. Soc.  2007,  129:  3844 
  • 6d Hartmann CE. Nolan SP. Cazin CSJ. Organometallics  2009,  28:  2915 
  • 6e Korn TJ. Schade MA. Wirth S. Knochel P. Org. Lett.  2006,  8:  725 
  • 6f Sapountzis I. Lin W. Kofink CC. Despotopoulou C. Knochel P. Angew. Chem. Int. Ed.  2005,  44:  1654 ; Angew. Chem. 2005, 117, 1682
  • For recent reviews, see:
  • 7a Alberico D. Scott ME. Lautens M. Chem. Rev.  2007,  107:  174 
  • 7b Seregin IV. Gevorgyan V. Chem. Soc. Rev.  2007,  36:  1173 
  • Selected recent examples:
  • 7c Lewis JC. Bergman RG. Ellman JA. Acc. Chem. Res.  2008,  41:  1013 
  • 7d Join B. Yamamoto T. Itami K. Angew. Chem. Int. Ed.  2009,  48:  3644 ; Angew. Chem. 2009, 121, 3698
  • For recent catalyst-free protocols, see:
  • 8a Krasovskiy A. Tishkov A. del Amo V. Mayr H. Knochel P. Angew. Chem. Int. Ed.  2006,  45:  5010 ; Angew. Chem. 2006, 118, 5132
  • 8b Maji MS. Pfeifer T. Studer A. Angew. Chem. Int. Ed.  2008,  47:  9547 ; Angew. Chem. 2008, 120, 9690
  • Selected examples:
  • 9a Tsou TT. Kochi JK. J. Am. Chem. Soc.  1979,  101:  7547 
  • 9b Yoshida H. Yamaryo Y. Ohshita J. Kunai A. Tetrahedron Lett.  2003,  44:  1541 
  • 9c Adamo C. Amatore C. Ciofini I. Jutand A. Lakmini H. J. Am. Chem. Soc.  2006,  128:  6829 
  • 9d Liégault B. Lee D. Huestis MP. Stuart DR. Fagnou K. J. Org. Chem.  2008,  73:  5022 
  • 11a Handbook on the Toxicology of Metals   Friberg L. Nordberg GF. Vouk VB. Elsevier; Amsterdam: 1986. 
  • 11b Nickel and the Skin: Absorption, Immunology, Epidemiology, and Metallurgy   Hostynek JJ. Maibach HI. CRC Press; Boca Raton: 2002. 
  • 12 Kharasch MS. Fields EK. J. Am. Chem. Soc.  1941,  63:  2316 
  • 13a Gilman H. Lichtenwalter M. J. Am. Chem. Soc.  1939,  61:  957 
  • 13b Wittig G. Bickelhaupt F. Chem. Ber.  1958,  91:  883 
  • 13c Wittig G. Klar G. Justus Liebigs Ann. Chem.  1967,  704:  91 
  • Selected examples:
  • 14a Moncomble A. Le Floch P. Gosmini C. Chem. Eur. J.  2009,  15:  4770 
  • 14b Amatore M. Gosmini C. Angew. Chem. Int. Ed.  2008,  47:  2089 ; Angew. Chem. 2008, 120, 2119
  • Recent examples:
  • 15a Zhou Z. Xue W. J. Organomet. Chem.  2009,  694:  599 
  • 15b Cahiez G. Moyeux A. Buendia J. Duplais C. J. Am. Chem. Soc.  2007,  129:  13788 
  • 16a For a recent review, see: Czaplik WM. Mayer M. Cvengroš J. Jacobi von Wangelin A. ChemSusChem  2009,  2:  396 
  • Selected recent examples:
  • 16b Nagano T. Hayashi T. Org. Lett.  2005,  7:  491 
  • 16c Cahiez G. Chaboche C. Mahuteau-Betzer F. Ahr M. Org. Lett.  2005,  7:  1943 
  • 16d Liu W. Lei A. Tetrahedron Lett.  2008,  49:  610 
  • 17a Porter CW. Steel C. J. Am. Chem. Soc.  1920,  42:  2650 
  • 17b Davies AG. Roberts BP. Acc. Chem. Res.  1972,  5:  387 
  • 18 For a related direct aryl-alkyl cross-coupling, see: Czaplik WM. Mayer M. Jacobi von Wangelin A. Angew. Chem. Int. Ed.  2009,  48:  607 ; Angew. Chem. 2009, 121, 616
  • For nucleophilic substitutions of Ar-F with Grignard compounds, see for example:
  • 20a Yoshikai N. Matsuda H. Nakamura E. J. Am. Chem. Soc.  2009,  131:  9590 
  • 20b Yoshikai N. Mashima H. Nakamura E. J. Am. Chem. Soc.  2005,  127:  17978 
  • 20c Böhm VPW. Gstöttmayr CWK. Weskamp T. Herrmann WA. Angew. Chem. Int. Ed.  2001,  40:  3387 ; Angew. Chem. 2001, 113, 3500
  • 21 Lee J.-S. Velarde-Ortiz R. Guijarro A. Wurst JR. Rieke RD. J. Org. Chem.  2000,  65:  5428 
  • 22 Cahiez G. Duplais C. Buendia J. Angew. Chem. Int. Ed.  2009,  48:  6731 ; Angew. Chem. 2009, 121, 6859
10

The current world market prices of palladium (370 USD/oz) and nickel (14.4 USD/lb) are expected to increase due to the request from emerging countries such as China, Russia, India, and Brazil.

19

General Procedure
A 10 mL flask was charged with Mg ribbons (74 mg, 3.0 mmol), fitted with a rubber septum, and purged with argon (1 min). Dry THF (4 mL) and the arylbromide (2.5 mmol) were added via a syringe. The solution was stirred at r.t. for 1-3 h under argon. Cooled to 0 ˚C, a solution of CoCl2 (16.1 mg, 0.12 mmol, 5 mol%) in dry THF (6 mL) was added. Synthetic air (20 mL/min) was added through a needle to the solution. After 0.5-3 h, the reaction was quenched with sat. aq NH4Cl (5 mL), extracted with EtOAc (3 × 10 mL).
The combined organic phases were dried (Na2SO4), concentrated, and subjected to flash chromatography (cyclohexene-EtOAc).
New Compounds
3′,3′′-Difluoro[1,1′:4,1′′:4′,1′′′]quarter-phenyl (2n): mp 182 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 7.75 (d, 4 H, J = 6 Hz), 7.65-7.05 (m, 12 H). ¹³C NMR (75 MHz, CDCl3): δ = 160.0 (d, J = 246 Hz), 140.4 (d, J = 6.8 Hz), 135.3 (d, J = 12.4 Hz), 131.1 (d, J = 3.4 Hz), 128.9, 128.5, 128.1, 122.7, 114.4 (d, J = 24.1 Hz). MS (EI, 70 eV): m/z (%) = 342 (100) [M+], 320 (7), 264 (5), 170 (7), 77 (5). HRMS: m/z = 342.122. IR (ATR): 1550 (m), 1473 (s), 1403 (m), 1246 (m), 1183 (m), 1130 (m), 1040 (m), 911 (s), 823 (s), 766 (s), 695 (s) cm.
3,3′,4,4′-Tetrafluorobiphenyl (2g): mp 83 ˚C; ¹H NMR (300 MHz, CDCl3): δ = 7.39-7.32 (m, 2 H), 7.30-7.25 (m, 4 H). ¹³C NMR (75 MHz, CDCl3): δ = 152.1 (dd, J = 12.7, 23.9 Hz), 148.8 (dd, J = 12.6, 24.8 Hz), 136.2, 123.0 (q, J = 3.4 Hz), 117.8 (d, J = 17.3 Hz), 116.0 (d, J = 17.9 Hz). MS (EI, 70 eV): m/z (%) = 226 (100 [M+], 206 (22), 175 (8), 156 (7), 138 (7), 112 (8). HRMS: m/z = 226.041. IR (ATR): 3064 (w), 1881 (w), 1599 (s), 1495 (s), 1339 (s), 1316 (m), 1265 (s), 1184 (s), 1150 (m), 117 (s), 1028 (m), 943 (m), 909 (m), 885 (m), 865 (s), 805 (s), 766 (s), 739 (s) cm.