Synlett 2009(17): 2795-2800  
DOI: 10.1055/s-0029-1217961
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Gold(III) Chloride Catalyzed Intermolecular Dimerization of 2-Ethynylanilines: Synthesis of Substituted Quinolines

C. Praveen, S. Jegatheesan, P. T. Perumal*
Organic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
Fax: +91(44)24911589; e-Mail: ptperumal@gmail.com;
Further Information

Publication History

Received 8 July 2009
Publication Date:
09 September 2009 (online)

Abstract

An unprecedented gold(III)-catalyzed intermolecular dimerization of 2-ethynylanilines possessing terminal triple bond offers a general synthetic pathway to a wide range of highly substituted quinolines.

    References and Notes

  • 1a Michael JP. Nat. Prod. Rep.  2007,  24:  223 
  • 1b Michael JP. Nat. Prod. Rep.  2005,  22:  627 
  • 1c Michael JP. Nat. Prod. Rep.  2004,  21:  650 
  • 1d Larsen RD. Corley EG. King AO. Carrol JD. Davis P. Verhoeven TR. Reider PJ. Labelle M. Gauthier JY. Xiang YB. Zamboni RJ. J. Org. Chem.  1996,  61:  3398 
  • 1e Chen YL. Fang KC. Sheu JY. Hsu SL. Tzeng CC. J. Med. Chem.  2001,  44:  2374 
  • 1f Roma G. Braccio MD. Grossi G. Mattioli F. Ghia M. Eur. J. Med. Chem.  2000,  1021 
  • 1g Kalluraya B. Sreenivasa S. Farmaco  1998,  53:  399 
  • 1h Dube D. Blouin M. Brideau C. Chan CC. Dermarsis S. Ethier D. Falgueyret JP. Friesen RW. Girard M. Girard Y. Guay J. Riendeau D. Tagari P. Young RN. Bioorg. Med. Chem. Lett.  1998,  8:  1255 
  • 1i Kouznetzov VV. Mendez LYV. Gomez CMM. Curr. Org. Chem.  2005,  9:  141 
  • 1j Arcadi A. Marinelli F. Rossi E. Tetrahedron  1999,  55:  13233 
  • 2 Kleeman A. Engel J. Kutscher B. Reichert D. Pharmaceutical Substances. Synthesis, Patents, Applications   Thieme; Stuttgart: 2001. 
  • 3a Kim HM. Jin J.-L. Lee CJ. Kim N. Park KH. Bull. Chem. Soc. Jpn.  1998,  71:  2945 
  • 3b Stille JK. Macromolecules  1981,  14:  870 
  • 3c Agrawal AK. Jenekhe SA. Macromolecules  1991,  24:  6806 
  • 3d Agrawal AK. Jenekhe SA. Chem. Mater.  1992,  4:  95 
  • 3e Agrawal AK. Jenekhe AK. Jenekhe SA. Chem. Mater.  1993,  28:  895 
  • 3f Agrawal AK. Jenekhe SA. Chem. Mater.  1993,  5:  633 
  • 3g Jenekhe SA. Lu L. Alam MM. Macromolecules  2001,  34:  7315 
  • 3h Agrawal AK. Jenekhe SA. Vanherzeele H. Meth JS. J. Phys. Chem.  1992,  96:  2837 
  • 3i Jegou G. Jenekhe SA. Macromolecules  2001,  34:  7926 
  • 3j Lu L. Jenekhe SA. Macromolecules  2001,  34:  6249 
  • 3k Agrawal AK. Jenekhe SA. Chem. Mater.  1996,  8:  579 
  • 3l Jenekhe SA. Zhang X. Chen XL. Choong VE. Gao Y. Hsieh BR. Chem. Mater.  1997,  9:  409 
  • 3m Zhang X. Shetty AS. Jenekhe SA. Macromolecules  1999,  32:  7422 
  • 3n Zhang X. Shetty AS. Jenekhe SA. Macromolecules  2000,  33:  2069 
  • 4a Saito I. Sando S. Nakatani K. Bioorg. Med. Chem.  2001,  9:  2381 
  • 4b He C. Lippard SJ. J. Am. Chem. Soc.  2001,  40:  1414 
  • 5 Balasubramanian M. Keay JG. In Comprehensive Heterocyclic Chemistry II   Vol. 5:  Katritzky AR. Rees CW. Scriven EFV. Pergamon Press; Oxford: 1996.  p.245-300  
  • For traditional methods of quinoline synthesis, see:
  • 6a Jones G. In Comprehensive Heterocyclic Chemistry II   Vol. 5:  Katritzky AR. Rees CW. Pergamon Press; New York: 1996.  p.167 
  • 6b Cho CS. Oh BH. Kim TJ. Kim TJ. Shim SC. Chem. Commun.  2000,  1885 
  • 6c Jiang B. Si YG. J. Org. Chem.  2002,  67:  9449 
  • 6d Skraup H. Ber. Dtsch. Chem. Ges.  1880,  13:  2086 
  • 6e Friedländer P. Ber. Dtsch. Chem. Ges.  1882,  15:  2572 
  • 6f Mansake RH. Kulka M. Org. React.  1953,  7:  59 
  • 6g Linderman RJ. Kirollos KS. Tetrahedron Lett.  1990,  31:  2689 
  • 6h Theoclitou ME. Robinson LA. Tetrahedron Lett.  2002,  43:  3907 
  • For recent advances in quinoline synthesis, see:
  • 7a Horn J. Marsden SP. Nelson A. House D. Weingarten GG. Org. Lett.  2008,  10:  4117 
  • 7b Xiao F. Chen Y. Liu Y. Wang J. Tetrahedron  2008,  64:  2755 
  • 7c Isobe A. Takagi J. Katagiri T. Uneyama K. Org. Lett.  2008,  10:  2657 
  • 7d O’Dell DK. Nicholas KM. J. Org. Chem.  2003,  68:  6427 
  • 7e Taguchi K. Sakaguchi S. Ishii Y. Tetrahedron Lett.  2005,  46:  4539 
  • 7f Lekhok KC. Prajapati D. Boruah RC. Synlett  2008,  655 
  • 7g Jacob J. Jones WD. J. Org. Chem.  2003,  68:  3563 
  • 7h Abbiati G. Arcadi A. Canevari V. Capezzuto L. Rossi E. J. Org. Chem.  2005,  70:  6454 
  • 7i Amii H. Kishikawa Y. Uneyama K. Org. Lett.  2001,  3:  1109 
  • For reviews of gold-catalyzed organic reactions, see:
  • 8a Hashmi ASK. Hutchings GJ. Angew. Chem. Int. Ed.  2006,  45:  7896 
  • 8b Hashmi ASK. Chem. Rev.  2007,  107:  3180 
  • 8c Amijs CHM. Ferrer C. Echaverren AM. Chem. Commun.  2007,  698 
  • 8d Fürstner A. Davies PW. Angew. Chem. Int. Ed.  2006,  46:  3410 
  • 8e Patil NT. Yamamoto Y. Chem. Rev.  2008,  108:  3395 
  • 8f Hoffmann-Röder A. Krause N. Org. Biomol. Chem.  2005,  3:  387 
  • 8g Hashmi ASK. Angew. Chem. Int. Ed.  2005,  44:  6990 ; Angew. Chem. 2005, 117, 7150
  • 8h Arcadi A. Giuseppe SD. Curr. Org. Chem.  2004,  8:  795 
  • 8i Nunez EJ. Echavarren AM. Chem. Commun.  2007,  333 
  • 8j Widenhoefer RA. Han X. Eur. J. Org. Chem.  2006,  4555 
  • 9a Praveen C. Sagayaraj YW. Perumal PT. Tetrahedron Lett.  2009,  50:  644 
  • 9b Praveen C. Kiruthiga P. Perumal PT. Synlett  2009,  1990 
  • 10a Sakai N. Annaka K. Konakahara T. J. Org. Chem.  2006,  71:  3653 
  • 10b Sakai N. Annaka K. Fujita A. Sato A. Konakahara T. J. Org. Chem.  2008,  73:  4160 
  • Some procedures for desilylation of 2-(trimethylsilylethynyl)aniline:
  • 11a Gabriele B. Salerno G. Veltri L. Costa M. Massera C. Eur. J. Org. Chem.  2001,  4607 
  • 11b Koradin C. Dohle W. Rodriguez AL. Schmid B. Knochel P. Tetrahedron  2003,  59:  1571 
  • 11c Trost BM. McClory A. Angew. Chem. Int. Ed.  2007,  46:  2074 
  • 11d Matsuda H, Okada S, Nakanishi H, Kato M, Horai S, and Horiishi N. inventors; JP  07126223. 
  • 11e Sakai N. Annaka K. Konakahara T. Tetrahedron Lett.  2006,  47:  631 ; see also ref. 12a-c
  • 12a Sonogashira K. In Metal-Catalyzed Cross-Coupling Reactions   Chap. 5:  Diederich F. Stang PJ. Wiley-VCH; Weinheim: 1998.  p.203-229  
  • 12b Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett.  1975,  16:  4467 
  • For the preparation of 2-iodoanilines, see:
  • 13a Ezquerra J. Pedregal C. Lamas C. J. Org. Chem.  1996,  61:  5804 
  • 13b Pearson SE. Nandan S. Synthesis  2005,  2503 
  • 13c Arcadi A. Cacchi S. Rosario MD. Fabrizi G. Marinelli F. J. Org. Chem.  1996,  61:  9280 
  • 13d Kajigaeshi S. Kakinami T. Yamasaki H. Fujisaki S. Okamoto T. Bull. Chem. Soc. Jpn.  1988,  61:  600 
  • 13e Batkowski T. Rocz. Chem.  1969,  43:  1623 ; Chem. Abstr. 1969, 72, 21575
  • 13f McCarroll A. SyntheticPages  2007,  261 ; http://www.syntheticpages.org/pages/261
  • 15a Arcadi A. Bianchi G. Marinelli F. Synthesis  2004,  610 
  • 15b Alfonsi M. Arcadi A. Aschi M. Bianchi G. Marinelli F. J. Org. Chem.  2005,  70:  2265 
  • 16 Liu X.-Y. Ding P. Huang J.-S. Che C.-M. Org. Lett.  2007,  9:  2645 
  • 18 Seregin IV. Gevargyan V. J. Am. Chem. Soc.  2006,  128:  12050 
14

Utilization of polar solvents like MeOH, EtOH, and wet MeCN resulted in the hydration of 2-ethynylaniline to form 2′-aminoacetophenone, and reaction in nonpolar solvents like CH2Cl2 and toluene led to the product formation only in 10% and 15% yield, respectively.

17

General Procedure for the Gold-Catalyzed Dimerization of 2-Ethynylanilines 2a-o; Representative Procedure for 2,4-Dibromo-6-(6,8-dibromo-4-methyl-2-quinolinyl)-phenylamine (2l, Table 2, Entry 12)
To a mixture of AuCl3 (27.57 mg, 0.09 mmol) and AgOTf (46 mg, 0.181 mmol) under N2 was added dry MeCN (2 mL) and stirred for 15 min at 25 ˚C. To the mixture was added a solution of 2,4-dibromo-6-ethynylaniline (1l, 500 mg, 1.81 mmol) in dry MeCN (2 mL) at 25 ˚C, and the whole was gradually warmed up to reflux temperature and stirred for the specified time (Table  [²] ). After completion of the reaction as indicated by TLC, the reaction mixture was concentrated under reduced pressure and purified by column chromatog-raphy over silica gel (100-200 mesh) to afford pure product 2,4-dibromo-6-(6,8-dibromo-4-methyl-2-quinolinyl)phenyl-amine(2l) as a yellow solid; mp 186-188 ˚C. IR (KBr): 3751, 3473, 2956, 2430,1457, 766 cm. ¹H NMR (500 MHz, CDCl3): δ = 2.51 (s, 3 H), 4.12 (br s, 2 H), 7.10 (d, 1 H, J = 2.3 Hz), 7.65 (d, 1 H, J = 2.2 Hz), 8.14 (d, 1 H, J = 2.3 Hz), 8.19 (d, 1 H, J = 2.3 Hz), 8.71 (s, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 26.9, 109.2, 110.1, 120.7, 124.7, 126.6, 126.7, 129.9, 131.4, 132.1, 134.9, 136.0, 141.6, 143.2, 152.1, 162.8. MS (ESI+): m/z = 551 [M+ + H]+, 553 [M²+ + H]+, 555 [M4+ + H]+. Anal. Calcd for C16H10Br4N2: C, 34.95; H, 1.83; N, 5.09. Found: C, 35.07; H, 1.78; N, 5.00.