Synlett 2009(11): 1803-1805  
DOI: 10.1055/s-0029-1217372
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Nucleophilic Ring Opening of Mono-Activated Cyclopropanes with Aryl­selenolates Generated from Diselenides in the Presence of a Zn/AlCl3 System

Mohammad Nazari, Barahman Movassagh*
Department of Chemistry, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran
Fax: +98(21)22853650; e-Mail: bmovass1178@yahoo.com;
Further Information

Publication History

Received 9 February 2009
Publication Date:
12 June 2009 (online)

Abstract

An efficient one-pot synthesis of γ-arylselenenyl ketones, acids, and nitriles is presented. The method uses Zn/AlCl3-promoted cleavage of diselenides and subsequent ring-opening of mono-activated cyclopropanes.

    References and Notes

  • 1a Liotta D. Organoselenium Chemistry   Wiley; New York: 1987. 
  • 1b Back TG. Organoselenium Chemistry: A Practical Approach   Oxford University Press; Oxford U. K.: 1999. 
  • 2a Mugesh G. du Mont WW. Sies H. Chem. Rev.  2001,  101:  2125 
  • 2b Malmstrom J. Jonsson M. Cotgreave IA. Hammarstrom L. Sjodin M. Engman L. J. Am. Chem. Soc.  2001,  123:  3434 
  • 2c Back TG. Moussa Z. J. Am. Chem. Soc.  2003,  125:  13455 
  • 2d Lucas MA. Nagugen OTK. Schiesser CH. Zheng SL. Tetrahedron  2000,  56:  3995 
  • 3 Monahan R. Brown D. Waykole L. Liotta D. In Organoselenium Chemistry   Liotta D. Wiley; New York: 1987. 
  • 4a Sharpless KB. Lauer RF. J. Am. Chem. Soc.  1973,  95:  2697 
  • 4b Aynsley EE. Greenwood NN. Leach JB. Chem. Ind. (London)  1966,  379 
  • 4c Zhang Y. Yu Y. Lin R. Synth. Commun.  1993,  23:  189 
  • 4d Suzuki H. Yoshinaga M. Takaoka K. Hiroi Y. Synthesis  1985,  497 
  • 4e Liotta D. Sunay U. Santiesteban H. Markiewicz W. J. Org. Chem.  1981,  46:  2605 
  • 4f Taboury F. Bull. Soc. Chem. Fr.  1903,  29:  761 
  • 4g Liotta D. Markiewicz W. Santiesteban H. Tetrahedron Lett.  1977,  4365 
  • 4h Liotta D. Santiesteban H. Tetrahedron Lett.  1977,  4369 
  • 5a Danishefsky S. Acc. Chem. Res.  1979,  12:  66 
  • 5b Danishefsky S. Mckee R. Singh RK. J. Am. Chem. Soc.  1977,  99:  4783 
  • 6a Wrobel T. Takahashi K. Honkan V. Lannoye G. Cook TM. Bertz SH. J. Org. Chem.  1983,  48:  139 
  • 6b Zutterman E. De Wilde H. Mijngheer R. De Clercq P. Vandewalle H. Tetrahedron  1979,  35:  2389 
  • 7a Taber DF. J. Am. Chem. Soc.  1977,  99:  3513 
  • 7b Caputo R. Ferreri C. Palumbo G. Tetrahedron Lett.  1984,  25:  577 
  • 7c Kondo K. Umemoto T. Takahatake Y. Tunemoto D. Tetrahedron Lett.  1977,  23:  113 
  • 8 Meinwald J. Crandall K. J. Am. Chem. Soc.  1966,  88:  1292 
  • 9 Smith AB. Scarborough RM. Tetrahedron Lett.  1978,  1649 
  • 10 Scarborough RM. Toder BH. Smith AB. J. Am. Chem. Soc.  1980,  102:  3904 
  • 11a Nazari M. Movassagh B. Tetrahedron Lett.  2009,  50:  1453 
  • 11b Nazari M. Movassagh B. Tetrahedron Lett.  2009,  50:  438 
  • 11c Movassagh B. Tatar A. Synlett  2007,  1954 
  • 11d Movassagh B. Mirshojaei F. Monatsh. Chem.  2003,  134:  831 
  • 11e Movassagh B. Shamsipoor M. Synlett  2005,  1316 
  • 11f Movassagh B. Fazeli A. Z. Naturforsch., B  2006,  61:  194 
  • 11g Movassagh B. Shamsipoor M. Joshaghani M. J. Chem. Res., Synop.  2004,  148 
  • 11h Movassagh B. Shamsipoor M. Synlett  2005,  127 
  • 11i Movassagh B. Fazeli A. Monatsh. Chem.  2007,  138:  863 
12

General Procedure: A mixture of diaryl diselenide (0.5 mmol) and zinc powder (3.0 mmol) in anhydrous MeCN (15 mL), was stirred at 70 ˚C. After 15 min, anhydrous AlCl3 (3.0 mmol in 2 mL anhydrous MeCN) was added cautiously. The mixture was stirred for 1 h at 70 ˚C, until the yellow solution turned colorless. The mono-activated cyclopropane (1.1 mmol) was then added to the solution and the mixture was stirred at 70 ˚C for the period of time specified in Table  [¹] . The progress of reaction was monitored with TLC. After the reaction was complete, the solution was filtered and the solvent was evaporated. Aqueous HCl (10%) was added to the crude product and the mixture was extracted with EtOAc (2 × 30 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered, and the solvent was removed under reduced pressure. Purification by preparative TLC (silica gel; n-hexane-EtOAc, 3:1) gave the corres-ponding arylselenenyl-functionalized ring-opened product. All novel compounds were characterized by ¹H and ¹³C NMR, IR, mass spectroscopy, and elemental analysis. Compound 4e: IR (neat): 1723, 2725, 2825 cm. ¹H NMR (500 MHz, CDCl3): δ = 2.06 (quin, J = 6.9 Hz, 2 H), 2.64 (t, J = 6.9 Hz, 2 H), 2.98 (t, J = 7.0 Hz, 2 H), 7.23-7.61 (m, 5 H), 9.80 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl3): δ = 22.9, 27.5, 29.3, 127.5, 129.4, 129.6, 132.7, 201.8 ppm. LRMS: m/z (%) = 227 (25) [M + 2]+, 225 (12) [M]+, 185 (45), 183 (22), 171 (32), 169 (15), 157 (78), 155 (42), 123 (53), 105 (31), 91 (100), 77 (78), 71 (58), 55 (45), 41 (49). Anal. Calcd for C10H12OSe: C, 52.87; H, 5.32. Found: C, 52.95; H, 5.35. Compound 4f: IR (neat): 1714 cm. ¹H NMR (500 MHz, CDCl3): δ = 1.96 (quin, J = 7.1 Hz, 2 H), 2.13 (s, 3 H), 2.59 (t, J = 7.0 Hz, 2 H), 2.91 (t, J = 7.2 Hz, 2 H), 7.24 (d, J = 8.5 Hz, 2 H), 7.43 (d, J = 8.5 Hz, 2 H) ppm. ¹³C NMR (125 MHz, CDCl3): δ = 23.9, 27.5, 30.0, 42.9, 128.2, 129.2, 133.1, 134.0, 207.7 ppm. LRMS: m/z (%) = 278 (7) [M + 4]+, 276 (15) [M + 2]+, 274 (7) [M]+, 191 (4), 156 (3), 125 (3), 85 (100), 43 (86). Anal. Calcd for C11H13ClOSe: C, 47.93; H, 4.75. Found: C, 47.83; H, 4.39. Compound 4g: mp 100-101 ˚C. IR (KBr disk): 1709, 2450-3500 cm. ¹H NMR (300 MHz, CDCl3): δ = 1.99 (quin, J = 7.2 Hz, 2 H), 2.51 (t, J = 7.2 Hz, 2 H), 2.94 (t, J = 7.3 Hz, 2 H), 7.24 (d, J = 8.5 Hz, 2 H), 7.43 (d, J = 8.5 Hz, 2 H), 11.50 (br s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 24.8, 27.1, 33.5, 127.7, 129.3, 133.3, 134.2, 179.3 ppm. LRMS:
m/z (%) = 280 (10) [M + 4]+, 278 (24) [M + 2]+, 276 (11) [M]+, 192 (21), 156 (16), 112 (24), 87 (100), 43 (44). Anal. Calcd for C10H11ClO2Se: C, 43.27; H, 3.99. Found: C, 43.16; H, 3.83. Compound 4h: IR (neat): 2246 cm. ¹H NMR (500 MHz, CDCl3): δ = 2.00 (quin, J = 7.0 Hz, 2 H), 2.51 (t, J = 7.0 Hz, 2 H), 2.99 (t, J = 7.1 Hz, 2 H), 7.27 (d, J = 8.5 Hz, 2 H), 7.45 (d, J = 8.5 Hz, 2 H) ppm. ¹³C NMR (125 MHz, CDCl3): δ = 17.1, 25.7, 26.4, 118.8, 127.0, 129.5, 133.9, 134.7 ppm. LRMS: m/z (%) = 261 (50) [M + 4]+, 259 (100) [M + 2]+, 257 (52) [M]+, 191 (14), 156 (14), 112 (11), 68 (14), 41 (27). Anal. Calcd for C10H10ClNSe: C, 46.44; H, 3.90; N, 5.42. Found: C, 46.73; H, 4.15; N, 5.58. Compound 4i: IR (neat): 1714 cm. ¹H NMR (500 MHz, CDCl3): δ = 1.96 (quin, J = 7.1 Hz, 2 H), 2.13 (s, 3 H), 2.59 (t, J = 7.1 Hz, 2 H), 2.99 (t, J = 7.1 Hz, 2 H), 7.40 (t, J = 7.7 Hz, 1 H), 7.50-7.62 (m, 2 H), 7.78-7.89 (m, 3 H), 8.40 (d, J = 8.4 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl3): δ = 24.0, 27.5, 29.7, 43.1, 125.8, 126.2, 126.6, 127.5, 128.3, 128.7, 129.2, 132.3, 134.1, 134.3, 207.9 ppm. LRMS: m/z (%) = 292 (17) [M + 2]+, 290 (10) [M]+, 207 (6), 165 (6), 141 (6), 128 (15), 115 (17), 85 (100), 43 (99). Anal. Calcd for C15H16OSe: C, 61.86; H, 5.54. Found: C, 62.17; H, 5.76. Compound 4j: IR (neat): 1708, 2400-3500 cm. ¹H NMR (500 MHz, CDCl3): δ = 2.01 (quin, J = 7.2 Hz, 2 H), 2.53 (t, J = 7.3 Hz, 2 H), 3.02 (t, J = 7.2 Hz, 2 H), 7.41 (t, J = 7.7 Hz, 1 H), 7.51-7.63 (m, 2 H), 7.80-7.90 (m, 3 H), 8.45 (d, J = 8.4 Hz, 1 H), 11.41 (br s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl3): δ = 25.0, 27.1, 33.8, 125.8, 126.3, 126.7, 127.6, 128.5, 128.7, 129.1, 132.5, 134.1, 134.4, 179.3 ppm. LRMS: m/z (%) = 294 (87) [M + 2]+, 292 (47) [M]+, 208 (38), 141 (14), 128 (100), 115 (65), 87 (67), 43 (24). Anal. Calcd for C14H14O2Se: C, 57.35; H, 4.81. Found: C, 56.99; H, 5.03.