Subscribe to RSS
DOI: 10.1055/s-0029-1217372
Nucleophilic Ring Opening of Mono-Activated Cyclopropanes with Arylselenolates Generated from Diselenides in the Presence of a Zn/AlCl3 System
Publication History
Publication Date:
12 June 2009 (online)
Abstract
An efficient one-pot synthesis of γ-arylselenenyl ketones, acids, and nitriles is presented. The method uses Zn/AlCl3-promoted cleavage of diselenides and subsequent ring-opening of mono-activated cyclopropanes.
Key words
mono-activated cyclopropanes - ring opening - diselenides - zinc selenolates - zinc
-
1a
Liotta D. Organoselenium Chemistry Wiley; New York: 1987. -
1b
Back TG. Organoselenium Chemistry: A Practical Approach Oxford University Press; Oxford U. K.: 1999. -
2a
Mugesh G.du Mont WW.Sies H. Chem. Rev. 2001, 101: 2125 -
2b
Malmstrom J.Jonsson M.Cotgreave IA.Hammarstrom L.Sjodin M.Engman L. J. Am. Chem. Soc. 2001, 123: 3434 -
2c
Back TG.Moussa Z. J. Am. Chem. Soc. 2003, 125: 13455 -
2d
Lucas MA.Nagugen OTK.Schiesser CH.Zheng SL. Tetrahedron 2000, 56: 3995 - 3
Monahan R.Brown D.Waykole L.Liotta D. In Organoselenium ChemistryLiotta D. Wiley; New York: 1987. -
4a
Sharpless KB.Lauer RF. J. Am. Chem. Soc. 1973, 95: 2697 -
4b
Aynsley EE.Greenwood NN.Leach JB. Chem. Ind. (London) 1966, 379 -
4c
Zhang Y.Yu Y.Lin R. Synth. Commun. 1993, 23: 189 -
4d
Suzuki H.Yoshinaga M.Takaoka K.Hiroi Y. Synthesis 1985, 497 -
4e
Liotta D.Sunay U.Santiesteban H.Markiewicz W. J. Org. Chem. 1981, 46: 2605 -
4f
Taboury F. Bull. Soc. Chem. Fr. 1903, 29: 761 -
4g
Liotta D.Markiewicz W.Santiesteban H. Tetrahedron Lett. 1977, 4365 -
4h
Liotta D.Santiesteban H. Tetrahedron Lett. 1977, 4369 -
5a
Danishefsky S. Acc. Chem. Res. 1979, 12: 66 -
5b
Danishefsky S.Mckee R.Singh RK. J. Am. Chem. Soc. 1977, 99: 4783 -
6a
Wrobel T.Takahashi K.Honkan V.Lannoye G.Cook TM.Bertz SH. J. Org. Chem. 1983, 48: 139 -
6b
Zutterman E.De Wilde H.Mijngheer R.De Clercq P.Vandewalle H. Tetrahedron 1979, 35: 2389 -
7a
Taber DF. J. Am. Chem. Soc. 1977, 99: 3513 -
7b
Caputo R.Ferreri C.Palumbo G. Tetrahedron Lett. 1984, 25: 577 -
7c
Kondo K.Umemoto T.Takahatake Y.Tunemoto D. Tetrahedron Lett. 1977, 23: 113 - 8
Meinwald J.Crandall K. J. Am. Chem. Soc. 1966, 88: 1292 - 9
Smith AB.Scarborough RM. Tetrahedron Lett. 1978, 1649 - 10
Scarborough RM.Toder BH.Smith AB. J. Am. Chem. Soc. 1980, 102: 3904 -
11a
Nazari M.Movassagh B. Tetrahedron Lett. 2009, 50: 1453 -
11b
Nazari M.Movassagh B. Tetrahedron Lett. 2009, 50: 438 -
11c
Movassagh B.Tatar A. Synlett 2007, 1954 -
11d
Movassagh B.Mirshojaei F. Monatsh. Chem. 2003, 134: 831 -
11e
Movassagh B.Shamsipoor M. Synlett 2005, 1316 -
11f
Movassagh B.Fazeli A. Z. Naturforsch., B 2006, 61: 194 -
11g
Movassagh B.Shamsipoor M.Joshaghani M. J. Chem. Res., Synop. 2004, 148 -
11h
Movassagh B.Shamsipoor M. Synlett 2005, 127 -
11i
Movassagh B.Fazeli A. Monatsh. Chem. 2007, 138: 863
References and Notes
General Procedure:
A mixture of diaryl diselenide (0.5 mmol) and zinc powder (3.0 mmol)
in anhydrous MeCN (15 mL), was stirred at 70 ˚C.
After 15 min, anhydrous AlCl3 (3.0 mmol in 2 mL anhydrous
MeCN) was added cautiously. The mixture was stirred for 1 h at 70 ˚C,
until the yellow solution turned colorless. The mono-activated cyclopropane (1.1
mmol) was then added to the solution and the mixture was stirred
at 70 ˚C for the period of time specified in Table
[¹]
. The progress of reaction
was monitored with TLC. After the reaction was complete, the solution
was filtered and the solvent was evaporated. Aqueous HCl (10%)
was added to the crude product and the mixture was extracted with
EtOAc (2 × 30 mL). The combined organic
layers were dried over anhydrous Na2SO4, filtered,
and the solvent was removed under reduced pressure. Purification
by preparative TLC (silica gel; n-hexane-EtOAc,
3:1) gave the corres-ponding arylselenenyl-functionalized ring-opened
product. All novel compounds were characterized by ¹H
and ¹³C NMR, IR, mass spectroscopy,
and elemental analysis. Compound 4e: IR
(neat): 1723, 2725, 2825 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.06
(quin, J = 6.9
Hz, 2 H), 2.64 (t, J = 6.9
Hz, 2 H), 2.98 (t, J = 7.0
Hz, 2 H), 7.23-7.61 (m, 5 H), 9.80 (s,
1 H) ppm. ¹³C NMR (125 MHz,
CDCl3): δ = 22.9,
27.5, 29.3, 127.5, 129.4, 129.6, 132.7, 201.8 ppm. LRMS: m/z (%) = 227
(25) [M + 2]+, 225
(12) [M]+, 185 (45), 183 (22),
171 (32), 169 (15), 157 (78), 155 (42), 123 (53), 105 (31), 91 (100),
77 (78), 71 (58), 55 (45), 41 (49). Anal. Calcd for C10H12OSe:
C, 52.87; H, 5.32. Found: C, 52.95; H, 5.35. Compound 4f: IR (neat): 1714 cm-¹. ¹H NMR
(500 MHz, CDCl3): δ = 1.96
(quin, J = 7.1
Hz, 2 H), 2.13 (s, 3 H), 2.59 (t, J = 7.0 Hz,
2 H), 2.91 (t, J = 7.2
Hz, 2 H), 7.24 (d, J = 8.5
Hz, 2 H), 7.43 (d, J = 8.5
Hz, 2 H) ppm. ¹³C NMR (125
MHz, CDCl3): δ = 23.9,
27.5, 30.0, 42.9, 128.2, 129.2, 133.1, 134.0, 207.7 ppm. LRMS: m/z (%) = 278
(7) [M + 4]+, 276
(15) [M + 2]+, 274
(7) [M]+, 191 (4), 156 (3),
125 (3), 85 (100), 43 (86). Anal. Calcd for C11H13ClOSe:
C, 47.93; H, 4.75. Found: C, 47.83; H, 4.39. Compound 4g: mp 100-101 ˚C.
IR (KBr disk): 1709, 2450-3500 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 1.99
(quin, J = 7.2
Hz, 2 H), 2.51 (t, J = 7.2
Hz, 2 H), 2.94 (t, J = 7.3
Hz, 2 H), 7.24 (d, J = 8.5
Hz, 2 H), 7.43 (d, J = 8.5
Hz, 2 H), 11.50 (br s, 1 H) ppm. ¹³C
NMR (75 MHz, CDCl3): δ = 24.8, 27.1,
33.5, 127.7, 129.3, 133.3, 134.2, 179.3 ppm. LRMS:
m/z (%) = 280
(10) [M + 4]+, 278
(24) [M + 2]+, 276
(11) [M]+, 192 (21), 156 (16),
112 (24), 87 (100), 43 (44). Anal. Calcd for C10H11ClO2Se:
C, 43.27; H, 3.99. Found: C, 43.16; H, 3.83. Compound 4h: IR (neat): 2246 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.00
(quin, J = 7.0
Hz, 2 H), 2.51 (t, J = 7.0
Hz, 2 H), 2.99 (t, J = 7.1
Hz, 2 H), 7.27 (d, J = 8.5 Hz,
2 H), 7.45 (d, J = 8.5
Hz, 2 H) ppm. ¹³C NMR (125 MHz,
CDCl3): δ = 17.1,
25.7, 26.4, 118.8, 127.0, 129.5, 133.9, 134.7 ppm. LRMS: m/z (%) = 261
(50) [M + 4]+, 259 (100) [M + 2]+,
257 (52) [M]+, 191 (14), 156
(14), 112 (11), 68 (14), 41 (27). Anal. Calcd for C10H10ClNSe:
C, 46.44; H, 3.90; N, 5.42. Found: C, 46.73; H, 4.15; N, 5.58. Compound 4i: IR (neat): 1714 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 1.96
(quin, J = 7.1
Hz, 2 H), 2.13 (s, 3 H), 2.59 (t, J = 7.1 Hz,
2 H), 2.99 (t, J = 7.1
Hz, 2 H), 7.40 (t, J = 7.7
Hz, 1 H), 7.50-7.62 (m, 2 H), 7.78-7.89
(m, 3 H), 8.40 (d, J = 8.4
Hz, 1 H) ppm. ¹³C NMR (125
MHz, CDCl3): δ = 24.0,
27.5, 29.7, 43.1, 125.8, 126.2, 126.6, 127.5, 128.3, 128.7, 129.2, 132.3,
134.1, 134.3, 207.9 ppm. LRMS: m/z (%) = 292
(17) [M + 2]+, 290
(10) [M]+, 207 (6), 165 (6),
141 (6), 128 (15), 115 (17), 85 (100), 43 (99). Anal. Calcd for
C15H16OSe: C, 61.86; H, 5.54. Found: C, 62.17;
H, 5.76. Compound 4j: IR (neat): 1708,
2400-3500 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.01
(quin, J = 7.2
Hz, 2 H), 2.53 (t, J = 7.3
Hz, 2 H), 3.02 (t, J = 7.2
Hz, 2 H), 7.41 (t, J = 7.7
Hz, 1 H), 7.51-7.63 (m, 2 H), 7.80-7.90
(m, 3 H), 8.45 (d, J = 8.4
Hz, 1 H), 11.41 (br s, 1 H) ppm. ¹³C
NMR (125 MHz, CDCl3): δ = 25.0,
27.1, 33.8, 125.8, 126.3, 126.7, 127.6, 128.5, 128.7, 129.1, 132.5,
134.1, 134.4, 179.3 ppm. LRMS: m/z (%) = 294
(87) [M + 2]+, 292
(47) [M]+, 208 (38), 141 (14), 128
(100), 115 (65), 87 (67), 43 (24). Anal. Calcd for C14H14O2Se:
C, 57.35; H, 4.81. Found: C, 56.99; H, 5.03.