Synthesis 2009(22): 3860-3868  
DOI: 10.1055/s-0029-1217012
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

N-Substitution Reactions of 20-π-Electron β-Tetrakis(trifluoromethyl)-meso-tetraphenylporphyrin

Xiao-Guang Chen, Chao Liu, Dong-Mei Shen, Qing-Yun Chen*
Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, P. R. of China
Fax: +86(21)64166128; e-Mail: chenqy@mail.sioc.ac.cn;
Further Information

Publication History

Received 23 June 2009
Publication Date:
23 September 2009 (online)

Abstract

The N-substitution reactions of 20-π-electron β-tetrakis(trifluoromethyl)-meso-tetraphenylporphyrin 2 with α,ω-dibromoalkanes in N,N-dimethylformamide at room temperature in the presence of various bases gave a variety of N-substituted isophlorins, the nature of which depended on the chain length of α,ω-dibromoalkanes and the reaction conditions. When 1,4-dibromobutane was used, a fascinating N,N′-bridged isophlorin 14 was obtained. In the case of 1,3-dibromopropane or 1,5-dibromopentane, N-monoalkylated or N,N′-dialkylated isophlorins were produced under similar conditions. The reactions of these N-alkylated isophlorins with activated zinc powder were complicated and reduction, hydrolysis, elimination, and intramolecular cyclization were all observed.

    References

  • 1 Liu C. Shen DM. Chen QY. J. Am. Chem. Soc.  2007,  129:  5814 
  • 2 Setsune J. Kashihara K. Wada K. Shiozaki H. Chem. Lett.  1999,  847 
  • 3a Pohl M. Schmickler H. Lex J. Vogel E. Angew. Chem., Int. Ed. Engl.  1991,  30:  1693 
  • 3b Bachmann R. Gerson F. Gescheidt G. Vogel E. J. Am. Chem. Soc.  1992,  114:  10855 
  • 3c Vogel E. Pohl M. Herrmann A. Wiss T. König C. Lex J. Gross M. Gisselbrecht JP. Angew. Chem., Int. Ed. Engl.  1996,  35:  1520 
  • 3d Vogel E. Grigat I. Köcher M. Lex J. Angew. Chem., Int. Ed. Engl.  1989,  28:  1655 
  • 4 Matano Y. Nakabuchi T. Fujishige S. Nakano H. Imahori H. J. Am. Chem. Soc.  2008,  130:  16446 
  • 5 Reddy JS. Anand VG. J. Am. Chem. Soc.  2008,  130:  3718 
  • 6 Weiss A. Hodgson MC. Boyd PDW. Siebert W. Brothers PJ. Chem. Eur. J.  2007,  13:  5982 
  • 7 Matsuo T. Ito K. Kanehisa N. Hayashi T. Org. Lett.  2007,  9:  5303 
  • 8a Cissell JA. Vaid TP. Yap GPA. J. Am. Chem. Soc.  2007,  129:  7841 
  • 8b Song H. E. Cissell JA. Vaid TP. Holten D. J. Phys. Chem. B  2007,  111:  2138 
  • 8c Cissell JA. Vaid TP. Yap GPA. Org. Lett.  2006,  8:  2401 
  • 8d Cissell JA. Vaid TP. Rheingold AL. Inorg. Chem.  2006,  45:  2367 
  • 8e Cissell JA. Vaid TP. Rheingold AL. J. Am. Chem. Soc.  2005,  127:  12212 
  • 8f Cissell JA. Vaid TP. DiPasquale AG. Rheingold AL. Inorg. Chem.  2007,  46:  7713 
  • 9 Yamamoto Y. Yamamoto A. Furuta SY. Horie M. Kodama M. Sato W. Akiba KY. Tsuzuki S. Uchimaru T. Hashizume D. Iwasaki F. J. Am. Chem. Soc.  2005,  127, 14540 
  • 10a Shen DM. Liu C. Chen XG. Chen QY. J. Org. Chem.  2009,  74:  206 
  • 10b Shen DM. Liu C. Chen QY. Synlett  2009,  945 
  • 10c Jin LM. Chen L. Yin JJ. Guo C. C. Chen QY. Eur. J. Org. Chem.  2005,  3994 
  • 10d Jin LM. Yin JJ. Chen L. Guo C. C. Chen QY. Synlett  2005,  2893 
  • 11 Shen DM. Liu C. Chen QY. Chem. Commun.  2005,  4982