Synthesis 2009(14): 2324-2328  
DOI: 10.1055/s-0029-1216856
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

A Safe, Convenient and Efficient One-Pot Synthesis of α-Chloroketone Acetals Directly from Ketones Using Iodobenzene Dichloride

Jun Yu, Chi Zhang*
The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. of China
Fax: +86(22)23499247; e-Mail: zhangchi@nankai.edu.cn;
Further Information

Publication History

Received 22 January 2009
Publication Date:
29 May 2009 (online)

Abstract

Various ketones, including aliphatic and aromatic ketones, can be directly converted into their corresponding α-chloroketone acetals in high to excellent yields using iodobenzene dichloride in ethylene glycol in the presence of 4 Å molecular sieves at room temperature.

    References

  • 1a Billings SB. Woerpel KA. J. Org. Chem.  2006,  71:  5171 
  • 1b Montgomery JA. Thomas HJ. Brockman RW. Elliott RD. J. Med. Chem.  1984,  27:  680 
  • 1c Treibs W. Grossmann P. Chem. Ber.  1959,  92:  267 
  • 1d Wanzliek HW. Gollmer G. Milz H. Chem. Ber.  1955,  88:  69 
  • 1e Levin RH. Magerlein BJ. Mcintosh AV. Hanze AR. Fonken GS. Thompson JL. Searcy AM. Scheri MA. Gutsell ES. J. Am. Chem. Soc.  1954,  76:  546 
  • 2a For sulfuryl chloride as a chlorinating reagent, see: Wyman DP. Kaufman PR. J. Org. Chem.  1964,  29:  1956 
  • 2b For cupric chloride as a chlorinating reagent, see: Kochi JK. J. Am. Chem. Soc.  1955,  77:  5274 
  • 2c For p-toluenesulfonyl chloride as a chlorinating, see: Brummond KM. Gesenberg KD. Tetrahedron Lett.  1999,  40:  2231 
  • 2d For N-chlorosuccinimide as a chlorinating reagent, see: Buu-Hoï NP. Demerseman P. J. Org. Chem.  1953,  18:  649 
  • 2e For tetraethylammonium trichloride as a chlorinating reagent, see: Schlama T. Gabriel K. Gouverneur V. Mioskowski C. Angew. Chem., Int. Ed. Engl.  1997,  36:  2342 
  • 3a Greene TW. Wuts PGM. Protective Groups in Organic Synthesis   4th ed.:  Wiley-Interscience; New York: 1999.  Chap. 4.
  • 3b Carlson R. Gautun H. Westerlund A. Adv. Synth. Catal.  2002,  344:  57 
  • 3c Chan TH. Brook MA. Chaly T. Synthesis  1983,  203 
  • 4 Gallucci RR. Going R. J. Org. Chem.  1981,  46:  2532 
  • 5 Willgerodt C. J. Prakt. Chem.  1886,  33:  154 
  • 6a Banks DF. Chem. Rev.  1966,  66:  243 
  • 6b Stang PJ. Zhdankin VV. Chem. Rev.  1996,  96:  1123 
  • 6c Zhdankin VV. Stang PJ. Chem. Rev.  2002,  102:  2523 
  • 6d Wirth T. Angew. Chem. Int. Ed.  2005,  44:  3656 
  • 6e Zhdankin VV. Stang PJ. Chem. Rev.  2008,  108:  5299 
  • 7 Garvey BS. Halley LF. Allen CFH. J. Am. Chem. Soc.  1937,  59:  1827 
  • 8 Zanka A. Takeuchi H. Kubota A. Org. Process Res. Dev.  1998,  2:  270 
  • 9a White P. Breslow R. J. Am. Chem. Soc.  1990,  112:  6842 
  • 9b Breslow R. Acc. Chem. Res.  1980,  13:  170 
  • 10a Whitfield SR. Sanford MS. J. Am. Chem. Soc.  2007,  129:  15142 
  • 10b Bachmann J. Hodgkiss JM. Young ER. Nocera DG. Inorg. Chem.  2007,  46:  607 
  • 10c Cotton FA. Koshevoy IO. Lahuerta P. Murillo CA. Sanaú M. Ubeda MA. Zhao QL. J. Am. Chem. Soc.  2006,  128:  13674 
  • 10d Bennett MA. Bhargava SK. Bond AM. Edwards AJ. Guo S.-X. Privér SH. Rae AD. Willis AC. Inorg. Chem.  2004,  43:  7752 
  • 10e Hayton TW. Legzdins P. Patrick BO. Inorg. Chem.  2002,  41:  5388 
  • 10f Bhargava SK. Mohr F. Bennett MA. Welling LL. Willis AC. Organometallics  2000,  19:  5628 
  • 10g Witte PT. Meetsma A. Hessen B. Organometallics  1999,  18:  2944 
  • 10h Filippou AC. Winter JG. Kociok-Köhn G. Troll C. Hinz I. Organometallics  1999,  18:  2649 
  • 11a Dneprovskii AS. Krainyuchenko IV. Temnikova TI. Zh. Org. Khim.  1978,  14:  1514 
  • 11b Moskovkina TV. Vysotskii VI. Zh. Org. Khim.  1991,  27:  833 
  • 11c Ibrahim H. Kleinbeck F. Togni A. Helv. Chim. Acta  2004,  87:  605 
  • 12a Zhao X.-F. Zhang C. Synthesis  2007,  551 
  • 12b Li X.-Q. Zhao X.-F. Zhang C. Synthesis  2008,  2589 
  • 14 Murakami M. Inukai N. Koda A. Nakano K. Chem. Pharm. Bull.  1971,  19:  1696 
  • 15 Trahanovsky WS. Doyle MP. Mullen PW. Ong CC. J. Org. Chem.  1969,  34:  3679 
  • 16 Park Y.-D. Kim J.-J. Cho S.-D. Lee S.-G. Falck JR. Yoon Y.-J. Synthesis  2005,  1136 
  • 17 Motohashi S. Satomi M. Fujimoto Y. Tatsuno T. Synthesis  1982,  1021 
  • 18 Dinctürk S. Jackson RA. Townson M. Ađirbas H. Billingham NC. March G. J. Chem. Soc., Perkin Trans. 2  1981,  1121 
13

One referee surmised that molecular chlorine might be the active species in our system and advised us to check this possibility by carrying out the reaction showed in Scheme  [³] in the presence of 4 Å MS. Accordingly, 4′-methylaceto­-phenone was treated with 1.1 equivalents of molecular chlorine in ethylene glycol in the presence of 4 Å MS at room temperature. After 20 hours, 48% of starting material was recovered and only 7% of the desired cyclic ketal of
α-chloroketone was obtained, together with 2-methyl-2-p-tolyl-1,3-dioxolane, which formed as the major product (40%). Apparently, this result is distinct from that observed with our PhICl2/ethylene glycol/4 Å MS system under which the same cyclic ketal of α-chloroketone was obtained in 95% yield within only 30 minutes (Table  [¹] , entry 5). Therefore, we believe that the mechanism shown in Scheme  [¹] is still preferable.