Synthesis 2009(12): 2015-2018  
DOI: 10.1055/s-0029-1216812
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Perfluoroalkylthio-Substituted Ferrocenes

Constantin Rhode, Jessica Lemke, Max Lieb, Nils Metzler-Nolte*
Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
Fax: +49(234)3214378; e-Mail: nils.metzler-nolte@rub.de;
Weitere Informationen

Publikationsverlauf

Received 9 December 2008
Publikationsdatum:
27. Mai 2009 (online)

Abstract

Mono- and bis(trifluoromethylthio)-substituted and perfluorooctanesulfonylferrocene derivatives were prepared by nucleophilic substitution reactions on the ferrocene core. Thus, Hg(SCF3)2 was activated in situ by Cu and used for nucleophilic displacement reactions of bromide. Trifluoromethylsulfonylferro­cene was not accessible by this method. The reaction of lithioferro­cene with trifluoromethylsulfonyl chloride gave chloroferrocene in small yield, presumably due to the high lattice energy of solid LiF. On the other hand, the known trifluoromethylferrocene was obtained as the only isolable compound from the photochemical reaction of CF3SSCF3 with ferrocene. The same product was detected in small amounts in the reaction of chloromercuryferrocene with tri­fluoromethylsulfonyl chloride. It thus appears that most established methods for trifluoromethylation of purely organic compounds fail for ferrocene due to concurring redox reactions. The new compounds have been comprehensively characterized by elemental analyses, NMR and IR spectroscopy, mass spectrometry, and electrochemistry. The SCF3 group appears to be almost as electron-withdrawing as a trifluoromethyl group on the ferrocene core.

    References

  • 1 Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev.  2008,  37:  320 
  • 2a Ainsworth SJ. Chem. Eng. News  2007,  85 (37):  13 
  • 2b Thayer AM. Chem. Eng. News  2006,  84 (23):  15 
  • 3a Popov VI. Lieb M. Haas A. Ukr. Khim. Zh. (Russ. Ed.)  1990,  56:  1115 ; Chem. Abstr. 1990, 114, 57248
  • 3b Hedberg FL. Rosenberg H. J. Organomet. Chem.  1971,  28:  C14 
  • 3c Rosenberg H. inventors; US Patent  3432533.  ; Chem. Abstr. 1969, 71, 3486
  • 4a Akiyama T. Kato K. Kajitani M. Sakaguchi Y. Nakamura J. Hayashi H. Sugimori A. Bull. Chem. Soc. Jpn.  1988,  61:  3531 
  • 4b Sugimori A, Kato K, and Akiyama T. inventors; Japanese Patent JP  61027927.  ; Chem. Abstr. 1986, 105, 208591
  • 5a Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Material Science   Togni A. Hayashi T. VCH; Weinheim: 1995. 
  • 5b Ferrocenes   Stepnicka P. Wiley; Chichester: 2008. 
  • 6a Metzler-Nolte N. Spec. Chem. Mag.  2002,  34 
  • 6b van Staveren DR. Metzler-Nolte N. Chem. Rev.  2004,  104:  5931 
  • 6c Kirin SI. Kraatz H.-B. Metzler-Nolte N. Chem. Soc. Rev.  2006,  35:  348 
  • 6d Metzler-Nolte N. In Bioorganometallics   Jaouen G., Wiley-VCH; Weinheim: 2006.  p.125-179  
  • 6e Metzler-Nolte N. In Comprehensive Organometallic Chemistry III   Crabtree R. Mingos DMP. Elsevier; Amsterdam: 2006.  p.883-920  
  • 6f Salmain M. Metzler-Nolte N. In Ferrocenes   Stepnicka P. Wiley; Chichester: 2008.  p.499-639  
  • 7a van Staveren DR. Weyhermüller T. Metzler-Nolte N. Dalton Trans.  2003,  210 
  • 7b Barisic L. Dropucic M. Rapic V. Pritzkow H. Kirin SI. Metzler-Nolte N. Chem. Commun.  2004,  2004 
  • 7c Kirin SI. Wissenbach D. Metzler-Nolte N. New J. Chem.  2005,  1168 
  • 7d Noor F. Wüstholz A. Kinscherf R. Metzler-Nolte N. Angew. Chem. Int. Ed.  2005,  44:  2429 
  • 7e Barisic L. Rapic V. Metzler-Nolte N. Eur. J. Inorg. Chem.  2006,  4019 
  • 7f Chantson J. Varga Falzacappa MV. Crovella S. Metzler-Nolte N. ChemMedChem  2006,  1:  1268 
  • 7g Hoffmanns U. Metzler-Nolte N. Bioconjugate Chem.  2006,  17:  204 
  • 7h Kirin SI. Schatzschneider U. de Hatten X. Weyhermüller T. Metzler-Nolte N. J. Organomet. Chem.  2006,  691:  3451 
  • 7i Jios JL. Kirin SI. Buceta NN. Weyhermüller T. Védova COD. Metzler-Nolte N. J. Organomet. Chem.  2007,  692:  4209 
  • 7j de Hatten X. Bothe E. Merz K. Huc I.
    Metzler-Nolte
    N. Eur. J. Inorg. Chem.  2008,  4530 
  • 7k Köster SD. Dittrich J. Gasser G. Hüsken N. Castañeda ICH. Jios JL. Védova COD.
    Metzler-Nolte
    N. Organometallics  2008,  27:  6326 
  • 7l Noor F. Kinscherf R. Bonaterra G. A. Metzler-Nolte N. ChemBioChem  2009,  10:  493 
  • 8a Hess A. Metzler-Nolte N. Chem. Commun.  1999,  885 
  • 8b Verheijen JC. van der Marel GA. van Boom JH. Metzler-Nolte N. Bioconjugate Chem.  2000,  11:  741 
  • 8c Maurer A. Kraatz H.-B. Metzler-Nolte N. Eur. J. Inorg. Chem.  2005,  3207 
  • 8d Gasser G. Hüsken N. Köster SD. Metzler-Nolte N. Chem. Commun.  2008,  3675 
  • 9a Müller-Westhoff UT. Yang Z. Ingram G. J. Organomet. Chem.  1993,  463:  163 
  • 9b Sanders R. Müller-Westhoff UT. J. Organomet. Chem.  1996,  512:  219 
  • 10 Dong T.-Y. Lai L.-L. J. Organomet. Chem.  1996,  509:  131 
  • 11 Slocum DW. Koonvitsky BW. Ernst CR. J. Organomet. Chem.  1972,  38:  125 
  • 12 Cech D. Wohlpfeil R. Etzold G. Nucl. Acids Res.  1975,  11:  2183 
  • 13 Haas A. Lieb M. J. Heterocycl. Chem.  1986,  23:  1079 
  • 15 Fish RW. Rosenblum M. J. Org. Chem.  1965,  30:  1253 
  • 16 Deck PA. Jackson WF. Fronczek FR. Organometallics  1996,  15:  5287 
14

Lieb, M.; Metzler-Nolte, N. unpublished results.