Subscribe to RSS
DOI: 10.1055/s-0029-1216745
A Convenient Synthesis of 1-Substituted 1,2,3-Triazoles via CuI/Et3N Catalyzed ‘Click Chemistry’ from Azides and Acetylene Gas
Publication History
Publication Date:
04 May 2009 (online)
Abstract
Copper(I)-catalyzed ‘click chemistry’ using acetylene gas was successfully explored under mild conditions. 1-Substituted-1,2,3-triazoles were conveniently synthesized from the corresponding aromatic and aliphatic azides.
Key words
azides - copper(I) catalysis - click chemistry - acetylene gas - 1,2,3-triazoles
- Supporting Information for this article is available online:
- Supporting Information
- Reviews on 1,2,3-triazoles, see:
-
1a
Fan W.-Q.Katritzky AR. In Comprehensive Heterocyclic Chemistry II Vol. 4:Katritzky AR.Rees CW.Scriven EFV. Elsevier; Oxford, UK: 1996. p.1-126 -
1b
Dehne H. In Methoden der Organischen Chemie (Houben-Weyl) Vol. E8d:Schumann E. Thieme; Stuttgart: 1994. p.305 -
2a
Kolb HC.Finn MG.Sharpless KB. Angew. Chem. Int. Ed. 2001, 40: 2004 -
2b
Rostovtsev VV.Green LG.Fokin VV.Sharpless KB. Angew. Chem. Int. Ed. 2002, 41: 2596 -
2c
Tornøe CW.Christensen C.Meldal M.
J. Org. Chem. 2002, 67: 3057 - For recent reviews, see:
-
3a
Bock VD.Hiemstra H.van Maarseveen JH. Eur. J. Org. Chem. 2006, 51 -
3b
Fournier D.Hoogenboom R.Schubert US. Chem. Soc. Rev. 2007, 36: 1369 -
3c
Moses JE.Moorhouse AD. Chem. Soc. Rev. 2007, 36: 1249 -
3d
Wu P.Fokin VV. Aldrichimica Acta 2007, 40: 7 -
3e
Tron GC.Pirali T.Billington RA.Canonico PL.Sorba G.Genazzani AA. Med. Res. Rev. 2008, 28: 278 -
3f
Gil MV.Arévalo MJ.López . Synthesis 2007, 1589 -
3g
Meldal M.Tornøe CW. Chem. Rev. 2008, 108: 2952 - For examples, see:
-
4a
Whiting M.Muldoon J.Lin Y.-C.Silverman SM.Lindstrom W.Olson AJ.Kolb HC.Finn MG.Sharpless KB.Elder JH.Fokin VV. Angew. Chem. Int. Ed. 2006, 45: 1435 -
4b
Kolb HC.Sharpless KB. Drug Discov. Today 2003, 8: 1128 -
4c
Ye CF.Gard GL.Winter RW.Syvret RG.Twamley B.Shreeve JM. Org. Lett. 2007, 9: 3841 -
4d
Angelos S.Yang YW.Patel K.Stoddart JF.Zink JI. Angew. Chem. Int. Ed. 2008, 47: 2222 -
4e
Fazio F.Bryan MC.Blixt O.Paulson JC.Wong C.-H. J. Am. Chem. Soc. 2002, 124: 14397 -
4f
Lutz J.-F. Angew. Chem. Int. Ed. 2007, 46: 1018 -
5a
Krasinski A.Fokin VV.Sharpless KB. Org. Lett. 2004, 6: 1237 -
5b
Rasmussen LK.Boren BC.Fokin VV. Org. Lett. 2007, 9: 5337 -
5c
Zhang L.Chen X.Xue P.Sun HHY.Williams ID.Sharpless KB.Fokin VV.Jia G. J. Am. Chem. Soc. 2005, 127: 15998 -
5d
Ackermann L.Potukuchi HK.Landsberg D.Vicente R. Org. Lett. 2008, 10: 3081 -
5e
Boren BC.Narayan S.Rasmussen LK.Shang L.Zhao H.Lin Z.Jia G.Fokin VV. J. Am. Chem. Soc. 2008, 130: 8923 -
5f
Chuprakov S.Chernyak N.Dudnik AS.Gevorgyan V. Org. Lett. 2007, 9: 2333 -
6a
Fletcher JT.Walz SE.Keeney ME. Tetrahedron Lett. 2008, 49: 7030 -
6b
Song R.-J.Deng C.-L.Xie Y.-X.Li J.-H. Tetrahedron Lett. 2007, 48: 7845 -
6c
Taillefer M.Xia N.Ouali A. Angew. Chem. Int. Ed. 2007, 46: 934 -
6d
Cristau HJ.Cellier PP.Spindler J.-F.Taillefer M. Chem. Eur. J. 2004, 10: 5607 -
6e
Taillefer M,Cristau H.-J,Cellier PP, andSpindler J.-F. inventors; FR 2833947. -
6f
Taillefer M,Cristau H.-J,Cellier PP, andSpindler J.-F. inventors; WO 0353225. ; Pr. Nb. Fr 2001 16547 -
6g
Taillefer M,Cristau H.-J,Cellier PP,Spindler J.-F, andOuali A. inventors; FR 2840303. -
6h
Taillefer M,Cristau H.-J,Cellier PP,Spindler J.-F, andOuali A. inventors; WO 03101966. ; Pr. Nb. Fr 200206717 -
7a
Fan H.Xu G.Chen Y.Jiang Z.Zhang S.Yang Y.Ji R. Eur. J. Med. Chem. 2007, 42: 1137 -
7b
Kauer JC.Carboni RA. J. Am. Chem. Soc. 1967, 89: 2633 -
8a
Yan Z.-Y.Zhao Y.-B.Fan M.-J.Liu W.-M.Liang Y.-M. Tetrahedron 2005, 61: 9331 -
8b
Zhao Y.-B.Yan Z.-Y.Liang Y.-M. Tetrahedron Lett. 2006, 47: 1545 -
8c
Yan Z.-Y.Niu Y.-N.Wei H.-L.Wu L.-Y.Zhao Y.-B.Liang Y.-M. Tetrahedron: Asymmetry 2006, 17: 3288 -
8d
Wu L.-Y.Yan Z.-Y.Xie Y.-X.Niu Y.-N.Liang Y.-M. Tetrahedron: Asymmetry 2007, 18: 2086 -
8e
Niu Y.-N.Yan Z.-Y.Li G.-Q.Wei H.-L.Gao G.-L.Wu L.-Y.Liang Y.-M. Tetrahedron: Asymmetry 2008, 19: 912 - 9
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 16: 4467
References and Notes
The present reaction exhibited strong solvent effect, which is greatly different from the typical ‘click chemistry’. The discrepancy was presumed to cause by the acetylene gas. In the reactions, abundant reddish-brown precipitate was formed.
11Acetonitrile and DMSO-H2O both gave excellent results in the template reaction. But when other azides used, the yields decreased significantly. In MeCN, 2b and 2c were obtained, respectively, in 52% and 63% after 24 h. In DMSO-H2O (4:1), 4-methylphenyl azide was tried, but the yield was only poor 40%. Therefore, we chose DMSO as typical solvent in subsequent experiments. The reason of the discrepancy is unknown.
12
Typical Procedure
for Compound 2.
To a 5 mL flask with Et3N
(0.4 mmol), azides 1 (1.0 mmol), and solvent
(1.5 mL), CuI (0.1 mmol) was added into the mixture under N2 atmosphere.
The flask was purged with acetylene for several times. Then the
mixture was stirred under a balloon pressure of acetylene at r.t.
After the designed time, the mixture was diluted with 25 mL EtOAc, and
washed by 10 mL H2O for four times then by brine. The organic
phase dried over anhyd Na2SO4. After removal
of the solvent under reduced pressure, the residue was purified on
SiO2 with PE-EtOAc (4:1 to 1:2). Caution: Azides are potentially explosive
compounds and should be handled with great care.
Analytical Data
of Selected Products
Compound 2a:
white solid, mp 51-53 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 7.71 (s,
1 H), 7.48 (s, 1 H), 7.37 (m, 3 H), 7.27 (m, 2 H), 5.57 (s, 2 H)
ppm. ¹³C NMR (100 MHz, CDCl3): δ = 134.6,
134.0, 128.9, 128.5, 127.8, 123.3, 53.7 ppm. MS (EI): m/z = 159 [M+],
130, 104, 91, 77.
Compound 2b:
pale yellow solid, mp 52-53 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 8.04 (s,
1 H), 7.88 (s, 1 H), 7.77 (m, 2 H), 7.56 (m, 2 H), 7.47 (m, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 137.5, 135.7,
130.0, 129.0, 122.8, 121.0 ppm. MS (EI): m/z = 145 [M+].
Compound 2c: ¹H NMR (400 MHz,
CDCl3): δ = 7.99 (s, 1 H), 7.80 (s,
1 H), 7.59 (d, J = 6.8
Hz, 2 H), 7.28 (d, J = 6.8 Hz,
2 H), 2.39 (s, 3 H) ppm. ¹³C NMR (100
MHz, CDCl3):
δ = 138.6, 134.5,
134.0, 130.0, 121.6, 120.2, 20.8 ppm.
MS (EI): m/z = 159 [M+].
Compound 2d: yellow oil. ¹H
NMR (400 MHz, CDCl3): δ = 7.98 (s,
1 H), 7.79 (s, 1 H), 7.54 (s, 1 H), 7.47 (d, J = 8.0
Hz, 1 H), 7.35 (d, J = 7.6
Hz, 1 H), 7.20 (d, J = 7.2
Hz, 1 H), 2.40 (s, 3 H) ppm. ¹³C NMR
(100 MHz, CDCl3): δ = 139.8, 136.8, 134.2,
129.34, 129.33, 121.7, 121.1, 117.5, 21.2 ppm.
MS (EI): m/z = 159 [M+].
Compound 2f: white solid, mp 78-80 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 7.94 (s,
1 H), 7.85 (s, 1 H), 7.65 (dd, J
1 = 6.9
Hz, J
2 = 2.1
Hz, 2 H), 7.03 (dd, J
1 = 6.9
Hz, J
2 = 2.1 Hz,
2 H), 3.88 (s, 3 H) ppm. ¹³C NMR (100
MHz, CDCl3):
δ = 160.1, 135.7,
131.1, 123.0, 122.6, 115.1, 55.9 ppm.
MS (EI): m/z = 175 [M+].
Compound 2g: pale yellow solid, mp 111-113 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 8.01 (s,
1 H), 7.85 (s, 1 H), 7.70 (d, J = 8.8
Hz, 2 H), 7.50 (d, J = 8.8
Hz, 2 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 138.6,
134.5, 134.0, 130.0, 121.6, 120.2, 20.8 ppm. MS (EI): m/z = 179 [M+].
Compound 2h: pale yellow solid, mp 91-93 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 8.05 (s,
1 H), 7.85 (s, 1 H), 7.79 (s, 1 H), 7.65 (d, J = 7.6
Hz, 1 H), 7.46 (d, J = 8.0
Hz, 1 H), 7.41 (d, J = 8.0
Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 137.7,
135.4, 134.6, 130.8, 128.7, 121.7, 120.7, 118.5 ppm. MS (EI): m/z = 179 [M+].