RSS-Feed abonnieren
DOI: 10.1055/s-0029-1216374
© Georg Thieme Verlag KG Stuttgart · New York
Heat Shock Protein 27 Modification is Increased in the Human Diabetic Failing Heart
Publikationsverlauf
received 15.12.2008
accepted 19.02.2009
Publikationsdatum:
21. April 2009 (online)

Abstract
Chronic conditions like diabetes mellitus (DM) leading to altered metabolism might cause cardiac dysfunction. Hyperglycemia plays an important role in the pathogenesis of diabetic complications including accumulation of methylglyoxal (MG), a highly reactive α-dicarbonyl metabolite of glucose degradation pathways and increased generation of advanced glycation endproducts (AGEs). The aim of this investigation was to study the extent of the MG-modification argpyrimidine in human diabetic heart and in rat cardiomyoblasts grown under hyperglycemic conditions. Left ventricular myocardial samples from explanted hearts of patients with cardiomyopathy with (n=8) or without DM (n=8) as well as nonfailing donor organs (n=6), and rat cardiac myoblasts H9c2 treated with glucose were screened for the MG-modification argpyrimidine. The small heat shock protein 27 (Hsp27) revealed to be the major argpyrimidine containing protein in cardiac tissue. Additionally, the modification of arginine leading to argpyrimidine and the phosphorylation of Hsp27 are increased in the myocardium of patients with DM. In H9c2 cells hyperglycemia leads to a decrease of the Hsp27-expression and an increase in argpyrimidine content and phosphorylation of Hsp27, which was accompanied by the induction of oxidative stress and apoptosis. This study shows an association between diabetes and increased argpyrimidine-modification of myocardial Hsp27, a protein which is involved in apoptosis, oxidative stress, and cytoskeleton stabilization.
Key words
argpyrimidine - methylglyoxal - diabetes mellitus - heart failure - Hsp27
References
- 1
Brownlee M.
Biochemistry and molecular cell biology of diabetic complications.
Nature.
2001;
414
813-820
MissingFormLabel
- 2
Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M.
Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic
subjects with and without prior myocardial infarction.
N Engl J Med.
1998;
339
229-234
MissingFormLabel
- 3
Poornima IG, Parikh P, Shannon RP.
Diabetic cardiomyopathy: the search for a unifying hypothesis.
Circ Res.
2006;
98
596-605
MissingFormLabel
- 4
Bucala R, Cerami A.
Advanced glycosylation: chemistry, biology, and implications for diabetes and aging.
Adv Pharmacol.
1992;
23
1-34
MissingFormLabel
- 5
Bunn HF, Higgins PJ.
Reaction of monosaccharides with proteins: possible evolutionary significance.
Science.
1981;
213
222-224
MissingFormLabel
- 6
Brownlee M, Cerami A, Vlassara H.
Advanced glycosylation end products in tissue and the biochemical basis of diabetic
complications.
N Engl J Med.
1988;
318
1315-1321
MissingFormLabel
- 7
Cooper ME.
Importance of advanced glycation end products in diabetes-associated cardiovascular
and renal disease.
Am J Hypertens.
2004;
17
31S-38S
MissingFormLabel
- 8
Sell DR, Lapolla A, Odetti P, Fogarty J, Monnier VM.
Pentosidine formation in skin correlates with severity of complications in individuals
with long-standing IDDM.
Diabetes.
1992;
41
1286-1292
MissingFormLabel
- 9
Bidasee KR, Zhang Y, Shao CH, Wang M, Patel KP, Dincer UD, Besch Jr HR.
Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic
reticulum Ca2+-ATPase.
Diabetes.
2004;
53
463-473
MissingFormLabel
- 10
Lee AG, East JM.
What the structure of a calcium pump tells us about its mechanism.
Biochem J.
2001;
356
665-683
MissingFormLabel
- 11
Sweadner KJ, Donnet C.
Structural similarities of Na, K-ATPase and SERCA, the Ca(2+)-ATPase of the sarcoplasmic
reticulum.
Biochem J.
2001;
356
685-704
MissingFormLabel
- 12
Berlanga J, Cibrian D, Guillen I, Freyre F, Alba JS, Lopez-Saura P, Merino N, Aldama A, Quintela AM, Triana ME, Montequin JF, Ajamieh H, Urquiza D, Ahmed N, Thornalley PJ.
Methylglyoxal administration induces diabetes-like microvascular changes and perturbs
the healing process of cutaneous wounds.
Clin Sci (Lond).
2005;
109
83-95
MissingFormLabel
- 13
Lapolla A, Flamini R, Vedova A, Senesi A, Reitano R, Fedele D, Basso E, Seraglia R, Traldi P.
Glyoxal and Methylglyoxal Levels in Diabetic Patients: Quantitative Determination
by a New GC/MS Method.
Clin Chem Lab Med.
2003;
41
1166-1173
MissingFormLabel
- 14
Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thorpe SR, Onorato J, Brownlee M.
Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular
advanced glycation endproduct formation and prevents hyperglycemia-induced increases
in macromolecular endocytosis.
J Clin Invest.
1998;
101
1142-1147
MissingFormLabel
- 15
Randell EW, Vasdev S, Gill V.
Measurement of methylglyoxal in rat tissues by electrospray ionization mass spectrometry
and liquid chromatography.
J Pharmacol Toxicol Methods.
2005;
51
153-157
MissingFormLabel
- 16
Ahmed N, Thornalley PJ.
Peptide mapping of human serum albumin modified minimally by methylglyoxal in vitro
and in vivo.
Ann N Y Acad Sci.
2005;
1043
260-266
MissingFormLabel
- 17
Padival AK, Crabb JW, Nagaraj RH.
Methylglyoxal modifies heat shock protein 27 in glomerular mesangial cells.
FEBS Lett.
2003;
551
113-118
MissingFormLabel
- 18
Sakamoto H, Mashima T, Yamamoto K, Tsuruo T.
Modulation of heat-shock protein 27 (Hsp27) anti-apoptotic activity by methylglyoxal
modification.
J Biol Chem.
2002;
277
45770-45775
MissingFormLabel
- 19
Schalkwijk CG, van Bezu J, van der Schors RC, Uchida K, Stehouwer CD, van Hinsbergh VW.
Heat-shock protein 27 is a major methylglyoxal-modified protein in endothelial cells.
FEBS Lett.
2006;
580
1565-1570
MissingFormLabel
- 20
van Heijst JW, Niessen HW, Musters RJ, van Hinsbergh VW, Hoekman K, Schalkwijk CG.
Argpyrimidine-modified Heat shock protein 27 in human non-small cell lung cancer:
a possible mechanism for evasion of apoptosis.
Cancer Lett.
2006;
241
309-319
MissingFormLabel
- 21
Pichon S, Bryckaert M, Berrou E.
Control of actin dynamics by p38 MAP kinase – Hsp27 distribution in the lamellipodium
of smooth muscle cells.
J Cell Sci.
2004;
117
2569-2577
MissingFormLabel
- 22
Ibitayo AI, Sladick J, Tuteja S, Louis-Jacques O, Yamada H, Groblewski G, Welsh M, Bitar KN.
HSP27 in signal transduction and association with contractile proteins in smooth muscle
cells.
Am J Physiol.
1999;
277
G445-G454
MissingFormLabel
- 23
Milting H, Scholz C, Arusoglu L, Freitag M, Cebulla R, Jaquet K, Korfer R, D VL, Kassner A, Brodde OE, Kogler H, El Banayosy A, Pieske B.
Selective upregulation of beta1-adrenergic receptors and dephosphorylation of troponin
I in end-stage heart failure patients supported by ventricular assist devices.
J Mol Cell Cardiol.
2006;
41
441-450
MissingFormLabel
- 24
Milting H, Kassner A, Arusoglu L, Meyer HE, Morshuis M, Brendel R, Klauke B, El Banayosy A, Korfer R.
Influence of ACE-inhibition and mechanical unloading on the regulation of extracellular
matrix proteins in the myocardium of heart transplantation candidates bridged by ventricular
assist devices.
Eur J Heart Fail.
2006;
8
278-283
MissingFormLabel
- 25
Oya T, Hattori N, Mizuno Y, Miyata S, Maeda S, Osawa T, Uchida K.
Methylglyoxal modification of protein. Chemical and immunochemical characterization
of methylglyoxal-arginine adducts.
J Biol Chem.
1999;
274
18492-18502
MissingFormLabel
- 26
Galderisi M, Anderson KM, Wilson PW, Levy D.
Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy
(the Framingham Heart Study).
Am J Cardiol.
1991;
68
85-89
MissingFormLabel
- 27
Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR.
Association of glycaemia with macrovascular and microvascular complications of type
2 diabetes (UKPDS 35): prospective observational study.
BMJ.
2000;
321
405-412
MissingFormLabel
- 28
Ren J, Davidoff AJ.
Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes.
Am J Physiol.
1997;
272
H148-H158
MissingFormLabel
- 29
Huot J, Houle F, Spitz DR, Landry J.
HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death
induced by oxidative stress.
Cancer Res.
1996;
56
273-279
MissingFormLabel
- 30
Kuethe F, Sigusch HH, Bornstein SR, Hilbig K, Kamvissi V, Figulla HR.
Apoptosis in patients with dilated cardiomyopathy and diabetes: a feature of diabetic
cardiomyopathy?.
Horm Metab Res.
2007;
39
672-676
MissingFormLabel
- 31
Oya-Ito T, Liu BF, Nagaraj RH.
Effect of methylglyoxal modification and phosphorylation on the chaperone and anti-apoptotic
properties of heat shock protein 27.
J Cell Biochem.
2006;
99
279-291
MissingFormLabel
- 32
Desai KM, Wu L.
Free radical generation by methylglyoxal in tissues.
Drug Metabol Drug Interact.
2008;
23
151-173
MissingFormLabel
- 33
Pleissner KP, Soding P, Sander S, Oswald H, Neuss M, Regitz-Zagrosek V, Fleck E.
Dilated cardiomyopathy-associated proteins and their presentation in a WWW-accessible
two-dimensional gel protein database.
Electrophoresis.
1997;
18
802-808
MissingFormLabel
- 34
Chowdhry MF, Vohra HA, Galinanes M.
Diabetes increases apoptosis and necrosis in both ischemic and nonischemic human myocardium:
role of caspases and poly-adenosine diphosphate-ribose polymerase.
J Thorac Cardiovasc Surg.
2007;
134
124-131
, 131 e121–e123
MissingFormLabel
- 35
Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, Anversa P.
Myocardial cell death in human diabetes.
Circ Res.
2000;
87
1123-1132
MissingFormLabel
- 36
Shimoni Y, Rattner JB.
Type 1 diabetes leads to cytoskeleton changes that are reflected in insulin action
on rat cardiac K(+) currents.
Am J Physiol Endocrinol Metab.
2001;
281
E575-E585
MissingFormLabel
1 These authors contributed equally to the work.
Correspondence
H. MiltingPhD
Heart and Diabetes Center
NRW
Ruhr-University Bochum
Georgstraße 11
32545 Bad Oeynhausen
Germany
Telefon: +49/5731/97 35 10
Fax: +49/5731/97 24 76
eMail: hmilting@hdz-nrw.de