Pneumologie 2009; 63(12): 709-717
DOI: 10.1055/s-0029-1215232
Serie: Infektiologie

© Georg Thieme Verlag KG Stuttgart · New York

Die Rolle von Viren bei tiefen Atemwegsinfektionen des Erwachsenen[1]

Teil 1: Erreger, Pathogenese und DiagnostikThe Impact of Viruses in Lower Respiratory Tract Infections of the AdultPart I: Pathogenesis, Viruses, and DiagnosticsS.  R.  Ott1 , 2 [*] , P.  M.  Lepper2 [*] , B.  Hauptmeier3 [*] , R.  Bals4 [*] , M.  W. R.  Pletz5 [*] , C.  Schumann6 [*] , C.  Steininger7 [*] , M.  Kleines8 [*] , H.  Geerdes-Fenge9 [*]
  • 1Helios Klinikum Emil von Behring, Zentrum für Pneumologie und Thoraxchirurgie Heckeshorn, Klinik für Pneumologie, Berlin
  • 2Universitätsklinik und Poliklinik für Pneumologie, Inselspital Bern, und Universität Bern, Bern, Schweiz
  • 3Berufgenossenschaftliche Universitätsklinik Bergmannsheil, Klinik für PneumologieBochum
  • 4Universitätsklinikum Giessen und Marburg, Standort Marburg
  • 5Medizinische Hochschule Hannover, Klinik für Pneumologie, Hannover
  • 6Universitätsklinikum Ulm, Sektion Pneumologie, Klinik für Innere Medizin II, Ulm
  • 7Medizinische Universität Wien, Klinik für Innere Medizin I, Wien, Österreich
  • 8Lehr- und Forschungsgebiet Virologie, Institut für Medizinische Mikrobiologie, Universitätsklinikum Aachen, RWTH Aachen,
  • 9Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, München
Weitere Informationen

Publikationsverlauf

eingereicht 12. 5. 2009

akzeptiert nach Revision 26. 8. 2009

Publikationsdatum:
03. November 2009 (online)

Zusammenfassung

Infektionen des Respirationstrakts sind in industrialisierten Ländern eine der häufigsten Ursachen für ärztliche Konsultationen, wobei rund ein Drittel dieser Erkrankungen die tiefen Atemwege betreffen. Hierzu zählen neben der akuten Bronchitis auch die akute Exazerbation einer chronisch obstruktiven Lungenerkrankung (COPD), die ambulant oder nosokomial erworbene Pneumonie und als besondere Entität die Influenza, die sämtliche Abschnitte des Respirationstrakts betreffen kann. Über lange Zeit wurde durch Mangel an geeigneten Untersuchungsmethoden die Bedeutung von respiratorischen Viren bei der Genese dieser Infektionen wahrscheinlich unterschätzt. Da bislang oft eine bakterielle Genese vermutet wurde, erfolgte in vielen Fällen im klinischen Alltag, insbesondere bei der akuten Bronchitis oder der exazerbierten COPD, eine antibiotische Behandlung, die wahrscheinlich nicht erforderlich ist und zudem das Risiko einer Resistenzentwicklung beinhaltet. Erst mit der Einführung von sensitiveren Nachweisverfahren für Viren, wie zum Beispiel der Polymerasekettenreaktion (PCR), gelingt ein sicherer und zuverlässiger Nachweis von respiratorischen Viren, der Aussagen über deren Bedeutung bei Infektionen des tiefen Respirationstrakts erlaubt. Im Rahmen dieser dreiteiligen Serie soll deshalb anhand der aktuellen Literatur ein Überblick über den derzeitigen Kenntnisstand zur Bedeutung von respiratorischen Viren bei tiefen Atemwegsinfektionen des Erwachsenen gegeben werden. Der erste Teil der Serie befasst sich mit den ursächlichen Erregern, der Pathogenese und Diagnostik bei tiefen Atemwegsinfektionen des Erwachsenen. In den folgenden Abschnitten werden Krankheitsbilder (Teil II: akute Bronchitis, exazerbierte COPD, Pneumonie und Influenza) sowie Therapie und Prävention (Teil III) vorgestellt.

Abstract

In industrialised countries respiratory tract infections are one of the most common reasons for medical consultations. It is assumed that almost one third of these infections include the lower respiratory tract (LRTI), e. g. acute bronchitis, acute exacerbation of chronic obstructive pulmonary disease (COPD), community- or hospital-acquired pneumonia and influenza. Due to a lack of sufficient and valid investigations on the epidemiology of respiratory viruses, their impact on the pathogenesis of LRTI has probably been underestimated for a long time. Therefore, there might have been many cases of needless antibiotic treatment, particularly in cases of acute bronchitis or acute exacerbations of COPD, because of an assumed bacteriological aetiology. Following the introduction of diagnostic procedures with increased sensitivity, such as polymerase chain reaction, it is possible to reliably detect respiratory viruses and to illuminate their role in the pathogenesis of LRTI of the adult. We have reviewed the current literature to elucidate the role of viruses in the pathogenesis of LRTI. The first part of this series deals with the relevant pathogens, pathogenesis, and diagnostic procedures. In the subsequent 2 parts of this series a review will be given on the most common variants of viral LRTI (part II), and therapeutic and preventive options (part III).

1 1 Gefördert durch die Paul Ehrlich Gesellschaft (PEG).

Literatur

  • 1 Office of Population Census and Surveys .Morbidity statistics from general practice, Fourth national study. 1991 – 1992, 1995
  • 2 Huchon , G . Management of adult community-acquired lower respiratory tract infections.  Eur Respir J. 1998;  8 391-426
  • 3 Macfarlane J T, Colville A, Guion A. et al . Prospective study of aetiology and outcome of adult lower-respiratory-tract infections in the community.  Lancet. 1993;  341 511-514
  • 4 Macfarlane J, Holmes W, Gard P. et al . Prospective study of the incidence, aetiology and outcome of adult lower respiratory tract illness in the community.  Thorax. 2001;  56 109-114
  • 5 Fahey T, Stocks N, Thomas T. Quantitative systematic review of randomised controlled trials comparing antibiotic with placebo for acute cough in adults.  BMJ. 1998;  316 906-910
  • 6 Anthonisen N R, Manfreda J, Warren C P. et al . Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease.  Ann Intern Med. 1987;  106 196-204
  • 7 Department of Health Standing Medical Advisory Committee Subgroup on Antimicrobial Resistance .The path of least resistance – main report. 2000
  • 8 Ruiz M, Ewig S, Marcos M A. et al . Etiology of community-acquired pneumonia: impact of age, comorbidity, and severity.  Am J Respir Crit Care Med. 1999;  160 397-405
  • 9 Lim W S, Macfarlane J T, Boswell T C. et al . Study of community acquired pneumonia aetiology (SCAPA) in adults admitted to hospital: implications for management guidelines.  Thorax. 2001;  56 296-301
  • 10 Höffken G, Lorenz J, Kern W. et al . S3-Leitlinie zur Epidemiologie, Diagnostik, antimikrobieller Therapie und Management von erwachsenen Patienten mit ambulant erworbenen tiefen Atemwegsinfektionen (akute Bronchitis, akute Exazerbation einer chronischen Bronchitis, Influenza und anderen respiratorischen Virusinfektionen) sowie ambulant erworbener Pneumonie.  Pneumologie. 2005;  59 612-664
  • 11 Creer D D, Dilworth J P, Gillespie S H. et al . Aetiological role of viral and bacterial infections in acute adult lower respiratory tract infection (LRTI) in primary care.  Thorax. 2006;  61 75-79
  • 12 de Roux A, Marcos M A, Garcia E. et al . Viral community-acquired pneumonia in nonimmunocompromised adults.  Chest. 2004;  125 1343-1351
  • 13 Rohde G, Wiethege A, Borg I. et al . Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalisation: a case-control study.  Thorax. 2003;  58 37-42
  • 14 Lemaitre B, Nicolas E, Michaut L. et al . The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults.  Cell. 1996;  86 973-983
  • 15 Tabeta K, Georgel P, Janssen E. et al . Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection.  Proc Natl Acad Sci U S A. 2004;  101 3516-3521
  • 16 Krug A, French A R, Barchet W. et al . TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function.  Immunity. 2004;  21 107-119
  • 17 Kurt-Jones E A, Popova L, Kwinn L. et al . Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus.  Nat Immunol. 2000;  1 398-401
  • 18 Hoebe K, Du X, Georgel P. et al . Identification of Lps2 as a key transducer of MyD88-independent TIR signalling.  Nature. 2003;  424 743-748
  • 19 Jude B A, Pobezinskaya Y, Bishop J. et al . Subversion of the innate immune system by a retrovirus.  Nat Immunol. 2003;  4 573-578
  • 20 Lund J, Sato A, Akira S. et al . Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells.  J Exp Med. 2003;  198 513-520
  • 21 Barton G M, Kagan J C, Medzhitov R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA.  Nat Immunol. 2006;  7 49-56
  • 22 Triantafilou K, Vakakis E, Orthopoulos G. et al . TLR8 and TLR7 are involved in the host’s immune response to human parechovirus 1.  Eur J Immunol. 2005;  35 2416-2423
  • 23 Crozat K ;. TLR7: A new sensor of viral infection.  Proc Natl Acad Sci USA. 2004;  101 6835-6836
  • 24 Kawai T, Sato S, Ishii K J. et al . Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6.  Nat Immunol. 2004;  5 1061-1068
  • 25 Zhang X, Wang C, Schook L B. et al . An RNA helicase, RHIV -1, induced by porcine reproductive and respiratory syndrome virus (PRRSV) is mapped on porcine chromosome 10q13.  Microb Pathog. 2000;  28 267-278
  • 26 Pichlmair A, Schulz O, Tan C P. et al . RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates.  Science. 2006;  314 997-1001
  • 27 Hornung V, Ellegast J, Kim S. et al . 5’-Triphosphate RNA is the ligand for RIG-I.  Science. 2006;  314 994-997
  • 28 Triantafilou K, Orthopoulos G, Vakakis E. et al . Human cardiac inflammatory responses triggered by Coxsackie B viruses are mainly Toll-like receptor (TLR) 8-dependent.  Cell Microbiol. 2005;  7 1117-1126
  • 29 Honda K, Takaoka A, Taniguchi T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors.  Immunity. 2006;  25 349-360
  • 30 Schnare M, Barton G M, Holt A C. et al . Toll-like receptors control activation of adaptive immune responses.  Nat Immunol. 2001;  2 947-950
  • 31 Andoniou C E, Andrews D M, Degli-Esposti M A. Natural killer cells in viral infection: more than just killers.  Immunol Rev. 2006;  214 239-250
  • 32 Klotman M E, Chang T L. Defensins in innate antiviral immunity.  Nat Rev Immunol. 2006;  6 447-456
  • 33 Sapey E, Stockley R A. COPD exacerbations. 2: aetiology.  Thorax. 2006;  61 250-258
  • 34 Papi A, Johnston S L. Rhinovirus infection induces expression of its own receptor intercellular adhesion molecule 1 (ICAM-1) via increased NF-kappaB-mediated transcription.  J Biol Chem. 1999;  274 9707-9720
  • 35 Aaron S D, Angel J B, Lunau M. et al . Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2001;  163 349-355
  • 36 Qiu Y, Zhu J, Bandi V. et al . Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2003;  168 968-975
  • 37 Gompertz S, O’Brien C, Bayley D L. et al . Changes in bronchial inflammation during acute exacerbations of chronic bronchitis.  Eur Respir J. 2001;  17 1112-1119
  • 38 Roland M, Bhowmik A, Sapsford R J. et al . Sputum and plasma endothelin-1 levels in exacerbations of chronic obstructive pulmonary disease.  Thorax. 2001;  56 30-35
  • 39 Kleines M, Scheithauer S, Rackowitz A. et al . High prevalence of human bocavirus detected in young children with severe acute lower respiratory tract disease by use of a standard PCR protocol and a novel real-time PCR protocol.  J Clin Microbiol. 2007;  45 1032-1034
  • 40 Drosten C, Gunther S, Preiser W. et al . Identification of a novel coronavirus in patients with severe acute respiratory syndrome.  N Engl J Med. 2003;  348 1967-1976
  • 41 van der Hoek L, Pyrc K, Jebbink M F. et al . Identification of a new human coronavirus.  Nat Med. 2004;  10 368-373
  • 42 Woo S C, Lau S K, Tsoi H W. et al . Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia.  J Infect Dis. 2005;  192 1898-1907
  • 43 van den Hoogen B G, de Jong J C, Groen J. et al . A newly discovered human pneumovirus isolated from young children with respiratory tract disease.  Nat Med. 2001;  7 719-724
  • 44 Principi N, Bosis S, Esposito S. Human metapneumovirus in paediatric patients.  Clin Microbiol Infect. 2006;  12 301-308
  • 45 Johnstone J, Majumdar S R, Fox J D. et al . Human metapneumovirus pneumonia in adults: results of a prospective study.  Clin Infect Dis. 2008;  46 571-574
  • 46 Cunha B A, Eisentstein L E, Dillard T. et al . Herpes simplex virus (HSV) pneumonia in a heart transplant: diagnosis and therapy.  Heart Lung. 2007;  36 72-78
  • 47 Carstens J, Andersen K H, Spencer E. et al . Cytomegalovirus infection in renal transplant recipients.  Transpl Infect Dis. 2006;  8 203-212
  • 48 Marzouk K, Corate L, Saleh S. et al . Epstein-Barr-virus-induced interstitial lung disease.  Curr Opin Pulm Med. 2005;  11 456-460
  • 49 Gerna G, Vitulo P, Rovida F. et al . Impact of human metapneumovirus and human cytomegalovirus versus other respiratory viruses on the lower respiratory tract infections of lung transplant recipients.  J Med Virol. 2006;  78 408-416
  • 50 Malmstrom K, Pitkaranta A, Carpen O. et al . Human rhinovirus in bronchial epithelium of infants with recurrent respiratory symptoms.  J Allergy Clin Immunol. 2006;  118 591-596
  • 51 Cate T R, Couch R B, Fleet W F. et al . Production of Tracheobronchitis in Volunteers with Rhinovirus in a Small-Particle Aerosol.  Am J Epidemiol. 1965;  81 95-105
  • 52 Harju T H, Leinonen M, Nokso-Koivisto J. et al . Pathogenic bacteria and viruses in induced sputum or pharyngeal secretions of adults with stable asthma.  Thorax. 2006;  61 579-584
  • 53 Mosser A G, Vrtis R, Burchell L. et al . Quantitative and qualitative analysis of rhinovirus infection in bronchial tissues.  Am J Respir Crit Care Med. 2005;  171 645-651
  • 54 Simpson J L, Moric I, Wark P A. et al . Use of induced sputum for the diagnosis of influenza and infections in asthma: a comparison of diagnostic techniques.  J Clin Virol. 2003;  26 339-346
  • 55 Xiang X, Qui D, Chan K P. et al . Comparison of three methods for respiratory virus detection between induced sputum and nasopharyngeal aspirate specimens in acute asthma.  J Virol Methods. 2002;  101 127-133
  • 56 Rohde G, Drosten C, Borg I. et al . Nachweis von Atemwegsviren – Wie, warum, wann und wo?.  Pneumologie. 2009;  63 14-22
  • 57 Steininger C, Kundi M, Aberle S W. et al . Effectiveness of reverse transcription-PCR, virus isolation, and enzyme-linked immunosorbent assay for diagnosis of influenza A virus infection in different age groups.  J Clin Microbiol. 2002;  40 2051-2056
  • 58 Steininger C, Redlberger M, Graninger W. et al . Near-patient assays for diagnosis of influenza virus infection in adult patients.  Clin Microbiol Infect. 2009;  15 267-273
  • 59 Kuypers J, Wright N, Ferrenberger , J . et al . Comparison of real-time PCR assays with fluorescent-antibody assays for diagnosis of respiratory virus infections in children.  J Clin Microbiol. 2006;  44 2382-2388
  • 60 Stroud M, Swindell B, Bernard G R. Cellular and humoral mediators of sepsis syndrome.  Crit Care Nurs Clin North Am. 1990;  2 151-160
  • 61 Simon L, Gauvin F, Amre D K. et al . Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis.  Clin Infect Dis. 2004;  39 206-217
  • 62 Meisner M, Brunkhorst F M, Reith H B. et al . Clinical experiences with a new semi-quantitative solid phase immunoassay for rapid measurement of procalcitonin.  Clin Chem Lab Med. 2000;  38 989-995
  • 63 Daubin C, Parienti J J, Vabret A. et al . Procalcitonin levels in acute exacerbation of COPD admitted in ICU: a prospective cohort study.  BMC Infect Dis. 2008;  8 145
  • 64 Stolz D, Christ-Crain M, Bingisser R. et al . Antibiotic treatment of exacerbations of COPD: a randomized, controlled trial comparing procalcitonin-guidance with standard therapy.  Chest. 2007;  131 9-19
  • 65 Christ-Crain M, Stolz D, Bingisser R. et al . Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: a randomized trial.  Am J Respir Crit Care Med. 2006;  174 84-93
  • 66 Lannergard , A , Larsson A, Kragsbjerg P. et al . Correlations between serum amyloid A protein and C-reactive protein in infectious diseases.  Scand J Clin Lab Invest. 2003;  63 267-272
  • 67 Steininger C, Graninger W, Zoufaly A. et al . Asymptomatic CMV viremia is associated with increased levels of serum amyloid A in patients with advanced HIV-infection.  Eur J Med Res. 2008;  13 304-308
  • 68 Horvath I, Hunt J, Barnes P J. et al . Exhaled breath condensate: methodological recommendations and unresolved questions.  Eur Respir J. 2005;  26 523-548
  • 69 Majewska E, Kasielski M, Luczynski R. et al . Elevated exhalation of hydrogen peroxide and thiobarbituric acid reactive substances in patients with community acquired pneumonia.  Respir Med. 2004;  98 669-676
  • 70 Corradi M, Pesci A, Casana R. et al . Nitrate in exhaled breath condensate of patients with different airway diseases.  Nitric Oxide. 2003;  8 26-30
  • 71 Vaughan J, Ngamtrakulpanit L, Pajewski T N. et al . Exhaled breath condensate pH is a robust and reproducible assay of airway acidity.  Eur Respir J. 2003;  22 889-894
  • 72 Kostikas K, Papatheodorou G, Ganas K. et al . pH in expired breath condensate of patients with inflammatory airway diseases.  Am J Respir Crit Care Med. 2002;  165 1364-1370
  • 73 Hunt J F, Fang K, Malik R. et al . Endogenous airway acidification. Implications for asthma pathophysiology.  Am J Respir Crit Care Med. 2000;  161 694-699
  • 74 Tate S, MacGregor G, Davis M. et al . Airways in cystic fibrosis are acidified: detection by exhaled breath condensate.  Thorax. 2002;  57 926-929
  • 75 Gessner C, Hammerschmidt S, Kuhn H. et al . Exhaled breath condensate acidification in acute lung injury.  Respir Med. 2003;  97 1188-1194
  • 76 Suliman H B, Ryan L K, Bishop L. et al . Prevention of influenza-induced lung injury in mice overexpressing extracellular superoxide dismutase.  Am J Physiol Lung Cell Mol Physiol. 2001;  280 L69-78
  • 77 Carpagnano G E, Foschino-Barbaro M P, Mule G. et al . 3p microsatellite alterations in exhaled breath condensate from patients with non-small cell lung cancer.  Am J Respir Crit Care Med. 2005;  172 738-744
  • 78 Gessner C, Kuhn H, Toepfe K. et al . Detection of p53 gene mutations in exhaled breath condensate of non-small cell lung cancer patients.  Lung Cancer. 2004;  43 215-222
  • 79 Agoritsas K, Mack K, Bonsu B K. et al . Evaluation of the Quidel QuickVue test for detection of influenza A and B viruses in the pediatric emergency medicine setting by use of three specimen collection methods.  J Clin Microbiol. 2006;  44 2638-2641
  • 80 Grijalva C G, Poehling K A, Edwards K M. et al . Accuracy and interpretation of rapid influenza tests in children.  Pediatrics. 2007;  119 e6-11
  • 81 Carraro E, Neto D F, Benfica D. et al . Applications of a duplex reverse transcription polymerase chain reaction and direct immunofluorescence assay in comparison with virus isolation for detection of influenza A and B.  Diagn Microbiol Infect Dis. 2007;  57 53-57
  • 82 Shetty A K, Treynor E, Hill D W. et al . Comparison of conventional viral cultures with direct fluorescent antibody stains for diagnosis of community-acquired respiratory virus infections in hospitalized children.  Pediatr Infect Dis J. 2003;  22 789-794
  • 83 Vareckova E, Blaskovicoa H, Gocnik M. et al . Evaluation of clinical specimens for influenza A virus positivity using various diagnostic methods.  Acta Virol. 2006;  50 181-186

1 1 Gefördert durch die Paul Ehrlich Gesellschaft (PEG).

2 Alle Autoren haben gleichermaßen zur Erstellung des Manuskriptes beigetragen.

Bisher erschienene Beiträge dieser Serie

Dr. Sebastian R. Ott

Universitätsklinik für Pneumologie
Universitätsspital Bern (Inselspital)

3010 Bern
Schweiz

eMail: sebastian.ott@insel.ch