Int J Sports Med 2009; 30(8): 614-623
DOI: 10.1055/s-0029-1214379
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Neuromuscular Fatigue after Resistance Training

M. Izquierdo 1 , J. Ibañez 1 , J. A. L. Calbet 2 , M. González-Izal 1 , I. Navarro-Amézqueta 1 , C. Granados 1 , A. Malanda 3 , F. Idoate 4 , J. J. González-Badillo 5 , K. Häkkinen 6 , W. J. Kraemer 7 , I. Tirapu 1 , E. M. Gorostiaga 1
  • 1Studies, Research and Sport Medicine Center, Government of Navarre, Spain
  • 2Department of Physical Education, University of Las Palmas of Gran Canaria, Spain
  • 3Department of Electric and Electronic Engineering, Public University of Navarre, Spain
  • 4Department of Radiology, Clinic of San Miguel, Navarre, Spain
  • 5Department of Physical Education and Computer Sciences, University Pablo of Olavide, Sevilla, Spain
  • 6Department of Biology of Physical Activity, University of Jyväskylä, Finland
  • 7Department of Kinesiology, Human Performance Laboratory, University of Connecticut, Storrs, CT, USA
Further Information

Publication History

accepted after revision February 9, 2009

Publication Date:
20 April 2009 (online)

Abstract

This study examined the effects of heavy resistance training on dynamic exercise-induced fatigue task (5×10RM leg-press) after two loading protocols with the same relative intensity (%) (5×10RMRel) and the same absolute load (kg) (5×10RMAbs) as in pretraining in men (n=12). Maximal strength and muscle power, surface EMG changes [amplitude and spectral indices of muscle fatigue], and metabolic responses (i.e.blood lactate and ammonia concentrations) were measured before and after exercise. After training, when the relative intensity of the fatiguing dynamic protocol was kept the same, the magnitude of exercise-induced loss in maximal strength was greater than that observed before training. The peak power lost after 5×10RMRel (58–62%, pre-post training) was greater than the corresponding exercise-induced decline observed in isometric strength (12–17%). Similar neural adjustments, but higher accumulated fatigue and metabolic demand were observed after 5×10RMRel. This study therefore supports the notion that similar changes are observable in the EMG signal pre- and post-training at fatigue when exercising with the same relative load. However, after training the muscle is relatively able to work more and accumulate more metabolites before task failure. This result may indicate that rate of fatigue development (i.e. power and MVC) was faster and more profound after training despite using the same relative intensity.

References

  • 1 Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture.  J Physiol. 2001;  534 613-623
  • 2 Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training.  J Appl Physiol. 2002;  93 1318-1326
  • 3 Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men.  Eur J Appl Physiol. 2003;  89 555-563
  • 4 Amann M, Proctor LT, Sebranek JJ, Eldridge MW, Pegelow DF, Dempsey JA. Somatosensory feedback from the limbs exerts inhibitory influences on central neural drive during whole body endurance exercise.  J Appl Physiol. 2008;  105 1714-1724
  • 5 Andersen JL, Aagaard P. Myosin heavy chain IIX overshoot in human skeletal muscle.  Muscle Nerve. 2000;  23 1095-1104
  • 6 Bigland-Ritchie B, Donovan EF, Roussos CS. Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts.  J Appl Physiol. 1981;  51 1300-1305
  • 7 Bonato P. Recent advancements in the analysis of dynamic EMG data.  IEEE Eng Med Biol Mag. 2001;  20 29-32
  • 8 Cheng AJ, Rice CL. Fatigue and recovery of power and isometric torque following isotonic knee extensions.  J Appl Physiol. 2005;  99 1446-1452
  • 9 Dimitrov GV, Arabadzhiev TI, Mileva KN, Bowtell JL, Crichton N, Dimitrova NA. Muscle fatigue during dynamic contractions assessed by new spectral indices.  Med Sci Sports Exerc. 2006;  38 1971-1979
  • 10 Duchateau J, Hainaut K. Isometric or dynamic training: differential effects on mechanical properties of a human muscle.  J Appl Physiol. 1984;  56 296-301
  • 11 Enoka RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function.  J Physiol. 2008;  586 11-23
  • 12 Farina D. Interpretation of the surface electromyogram in dynamic contractions.  Exerc Sport Sci Rev. 2006;  34 121-127
  • 13 Fitts RH. Cellular mechanisms of muscle fatigue.  Physiol Rev. 1994;  74 49-94
  • 14 Green HJ, Daub BD, Painter DC, Thomson JA. Glycogen depletion patterns during ice hockey performance.  Med Sci Sports. 1978;  10 289-293
  • 15 Hakkinen K, Alen M, Komi PV. Changes in isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining.  Acta Physiol Scand. 1985;  125 573-585
  • 16 Hakkinen K, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Malkia E, Kraemer WJ, Newton RU, Alen M. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people.  J Appl Physiol. 1998;  84 1341-1349
  • 17 Hellsten Y, Apple FS, Sjodin B. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle.  J Appl Physiol. 1996;  81 1484-1487
  • 18 Hickson RC, Hidaka K, Foster C, Falduto MT, Chatterton  RT. Successive time courses of strength development and steroid hormone responses to heavy-resistance training.  J Appl Physiol. 1994;  76 663-670
  • 19 Izquierdo M, Ibanez J, Gonzalez-Badillo JJ, Hakkinen K, Ratamess NA, Kraemer WJ, French DN, Eslava J, Altadill A, Asiain X, Gorostiaga EM. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains.  J Appl Physiol. 2006;  100 1647-1656
  • 20 Jackson AS, Pollock ML. Generalized equations for predicting body density of men.  Br J Nutr. 1978;  40 497-504
  • 21 James C, Sacco P, Jones DA. Loss of power during fatigue of human leg muscles.  J Physiol. 1995;  484 ((Pt 1)) 237-246
  • 22 Karlsson J, Saltin B. Oxygen deficit and muscle metabolites in intermittent exercise.  Acta Physiol Scand. 1971;  82 115-122
  • 23 Klass M, Guissard N, Duchateau J. Limiting mechanisms of force production after repetitive dynamic contractions in human triceps surae.  J Appl Physiol. 2004;  96 1516-1521
  • 24 Komi PV, Tesch P. EMG frequency spectrum, muscle structure, and fatigue during dynamic contractions in man.  Eur J Appl Physiol. 1979;  42 41-50
  • 25 Kraemer WJ, Staron RS, Hagerman FC, Hikida RS, Fry AC, Gordon SE, Nindl BC, Gothshalk LA, Volek JS, Marx JO, Newton RU, Hakkinen K. The effects of short-term resistance training on endocrine function in men and women.  Eur J Appl Physiol. 1998;  78 69-76
  • 26 Linnamo V, Hakkinen K, Komi PV. Neuromuscular fatigue and recovery in maximal compared to explosive strength loading.  Eur J Appl Physiol. 1998;  77 176-181
  • 27 MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM. Muscle performance and enzymatic adaptations to sprint interval training.  J Appl Physiol. 1998;  84 2138-2142
  • 28 McCall GE, Byrnes WC, Fleck SJ, Dickinson A, Kraemer WJ. Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy.  Can J Appl Physiol. 1999;  24 96-107
  • 29 Mitchell JH, Reeves Jr DR, Rogers HB, Secher NH. Epidural anaesthesia and cardiovascular responses to static exercise in man.  J Physiol. 1989;  417 13-24
  • 30 Mohr M, Krustrup P, Nielsen JJ, Nybo L, Rasmussen MK, Juel C, Bangsbo J. Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development.  Am J Physiol. 2007;  292 R1594-R1602
  • 31 Perez-Gomez J, Olmedillas H, Delgado-Guerra S, Ara I, Vicente-Rodriguez G, Ortiz RA, Chavarren J, Calbet JA. Effects of weight lifting training combined with plyometric exercises on physical fitness, body composition, and knee extension velocity during kicking in football.  Appl Physiol Nutr Metab. 2008;  33 501-510
  • 32 Potvin JR. Effects of muscle kinematics on surface EMG amplitude and frequency during fatiguing dynamic contractions.  J Appl Physiol. 1997;  82 144-151
  • 33 Sahlin K, Henriksson J. Buffer capacity and lactate accumulation in skeletal muscle of trained and untrained men.  Acta Physiol Scand. 1984;  122 331-339
  • 34 Staron RS, Karapondo DL, Kraemer WJ, Fry AC, Gordon SE, Falkel JE, Hagerman FC, Hikida RS. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women.  J Appl Physiol. 1994;  76 1247-1255
  • 35 Stauber WT, Barill ER, Stauber RE, Miller GR. Isotonic dynamometry for the assessment of power and fatigue in the knee extensor muscles of females.  Clin Physiol. 2000;  20 225-233
  • 36 Thorstensson A, Sjodin B, Karlsson J. Enzyme activities and muscle strength after “sprint training” in man.  Acta Physiol Scand. 1975;  94 313-318

Correspondence

Dr. M. Izquierdo

Gobierno de Navarra

Centro de Estudios, Investigación y Medicina del Deporte

C/Sangüesa 34

31005 Pamplona

Spain

Phone: +34/94/829 26 23

Fax: +34/94/829 26 36

Email: mikel.izquierdo@ceimd.org