Semin Liver Dis 2009; 29(2): 178-187
DOI: 10.1055/s-0029-1214373
© Thieme Medical Publishers

“Second Hit” Models of Alcoholic Liver Disease

Hidekazu Tsukamoto1 , 2 , 4 , Keigo Machida1 , 3 , Alla Dynnyk1 , 2 , Hasmik Mkrtchyan1 , 2
  • 1Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern California
  • 2Department of Pathology, Keck School of Medicine of the University of Southern California
  • 3Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California
  • 4Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, California
Further Information

Publication History

Publication Date:
22 April 2009 (online)

ABSTRACT

Alcoholic liver disease (ALD) is a lifestyle disease with its pathogenesis and individual predisposition governed by gene–environment interactions. Based on the “second hit” or “multiple hits” hypothesis, patients are predisposed to progressive ALD when a magic combination of gene and environmental interactions exists. Reproduction of second or multiple hits in animal models serves to test a combination and to gain mechanistic insights into synergism achieved by such combination. Numerous environmental factors have been incorporated into animal models, largely classified into nutritional, xenobiotic/pharmacologic, hemodynamic, and viral groups. A loss or gain of function genetic model has become a popular experimental approach to test the role of a gene as a second hit. Future research will need to test more subtle or natural hits combined with excessive alcohol intake to test multiple hits in the genesis of ALD. Additionally, animal models of comorbidities are urgently needed particularly for synergistic liver disease and oncogenesis caused by alcohol, obesity, and hepatitis virus.

REFERENCES

  • 1 Younossi Z M. Epidemiology of alcohol-induced liver disease. In: McCullough AJ Clinics in Liver Disease. Philadelphia; WB Saunders 1998: 661-671
  • 2 Day C P, James O F. Steatohepatitis: a tale of two “hits”?.  Gastroenterology. 1998;  114(4) 842-845
  • 3 Yoo J S, Ning S M, Pantuck C B, Pantuck E J, Yang C S. Regulation of hepatic microsomal cytochrome P450IIE1 level by dietary lipids and carbohydrates in rats.  J Nutr. 1991;  121(7) 959-965
  • 4 Tsukamoto H, Towner S J, Ciofalo L M, French S W. Ethanol-induced liver fibrosis in rats fed high fat diet.  Hepatology. 1986;  6(5) 814-822
  • 5 Tsukada H, Wang P Y, Kaneko T, Wang Y, Nakano M, Sato A. Dietary carbohydrate intake plays an important role in preventing alcoholic fatty liver in the rat.  J Hepatol. 1998;  29(5) 715-724
  • 6 Korourian S, Hakkak R, Ronis M J et al.. Diet and risk of ethanol-induced hepatotoxicity: carbohydrate-fat relationships in rats.  Toxicol Sci. 1999;  47(1) 110-117
  • 7 Tomita K, Azuma T, Kitamura N et al.. Leptin deficiency enhances sensitivity of rats to alcoholic steatohepatitis through suppression of metallothionein.  Am J Physiol Gastrointest Liver Physiol. 2004;  287(5) G1078-G1085
  • 8 Schattenberg J M, Wang Y, Singh R, Rigoli R M, Czaja M J. Hepatocyte CYP2E1 overexpression and steatohepatitis lead to impaired hepatic insulin signaling.  J Biol Chem. 2005;  280(11) 9887-9894
  • 9 Ozcan U, Cao Q, Yilmaz E et al.. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes.  Science. 2004;  306(5695) 457-461
  • 10 Kim D S, Jeong S K, Kim H R, Kim D S, Chae S W, Chae H J. Effects of triglyceride on ER stress and insulin resistance.  Biochem Biophys Res Commun. 2007;  363(1) 140-145
  • 11 Kaplowitz N, Than T A, Shinohara M, Ji C. Endoplasmic reticulum stress and liver injury.  Semin Liver Dis. 2007;  27(4) 367-377
  • 12 Nanji A A, Khwaja S, Tahan S R, Sadrzadeh S M. Plasma levels of a novel noncyclooxygenase-derived prostanoid (8-isoprostane) correlate with severity of liver injury in experimental alcoholic liver disease.  J Pharmacol Exp Ther. 1994;  269(3) 1280-1285
  • 13 Tipoe G L, Liong E C, Casey C A et al.. A voluntary oral ethanol-feeding rat model associated with necroinflammatory liver injury.  Alcohol Clin Exp Res. 2008;  32(4) 669-682
  • 14 Larter C Z, Yeh M M, Cheng J et al.. Activation of peroxisome proliferator-activated receptor alpha by dietary fish oil attenuates steatosis, but does not prevent experimental steatohepatitis because of hepatic lipoperoxide accumulation.  J Gastroenterol Hepatol. 2008;  23(2) 267-275
  • 15 Wada S, Yamazaki T, Kawano Y, Miura S, Ezaki O. Fish oil fed prior to ethanol administration prevents acute ethanol-induced fatty liver in mice.  J Hepatol. 2008;  49(3) 441-450
  • 16 Powell L W. The role of alcoholism in hepatic iron storage disease.  Ann N Y Acad Sci. 1975;  252 124-134
  • 17 Sadrzadeh S M, Nanji A A, Price P L. The oral iron chelator, 1,2-dimethyl-3-hydroxypyrid-4-one reduces hepatic-free iron, lipid peroxidation and fat accumulation in chronically ethanol-fed rats.  J Pharmacol Exp Ther. 1994;  269(2) 632-636
  • 18 Lin M, Rippe R A, Niemela O, Brittenham G, Tsukamoto H. Role of iron in NF-kappa B activation and cytokine gene expression by rat hepatic macrophages.  Am J Physiol. 1997;  272(6 Pt 1) G1355-G1364
  • 19 Tsukamoto H, Horne W, Kamimura S et al.. Experimental liver cirrhosis induced by alcohol and iron.  J Clin Invest. 1995;  96(1) 620-630
  • 20 Tsukamoto H, Lin M, Ohata M, Giulivi C, French S W, Brittenham G. Iron primes hepatic macrophages for NF-kappaB activation in alcoholic liver injury.  Am J Physiol. 1999;  277(6 Pt 1) G1240-G1250
  • 21 Otogawa K, Kinoshita K, Fujii H et al.. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: implications for the pathogenesis of human nonalcoholic steatohepatitis.  Am J Pathol. 2007;  170(3) 967-980
  • 22 Xiong S, She H, Zhang A S et al.. Hepatic macrophage iron aggravates experimental alcoholic steatohepatitis.  Am J Physiol Gastrointest Liver Physiol. 2008;  295(3) G512-G521
  • 23 McClain C J, Antonow D R, Cohen D A, Shedlofsky S I. Zinc metabolism in alcoholic liver disease.  Alcohol Clin Exp Res. 1986;  10(6) 582-589
  • 24 Cravo M L, Gloria L M, Selhub J et al.. Hyperhomocysteinemia in chronic alcoholism: correlation with folate, vitamin B-12, and vitamin B-6 status.  Am J Clin Nutr. 1996;  63(2) 220-224
  • 25 Barak A J, Tuma D J, Sorrell M F. Relationship of ethanol to choline metabolism in the liver: a review.  Am J Clin Nutr. 1973;  26(11) 1234-1241
  • 26 Halsted C H, Villanueva J A, Devlin A M et al.. Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig.  Proc Natl Acad Sci U S A. 2002;  99(15) 10072-10077
  • 27 Nieto N, Rojkind M. Repeated whiskey binges promote liver injury in rats fed a choline-deficient diet.  J Hepatol. 2007;  46(2) 330-339
  • 28 Lu S C, Tsukamoto H, Mato J M. Role of abnormal methionine metabolism in alcoholic liver injury.  Alcohol. 2002;  27(3) 155-162
  • 29 Barak A J, Beckenhauer H C, Tuma D J. Methionine synthase. a possible prime site of the ethanolic lesion in liver.  Alcohol. 2002;  26(2) 65-67
  • 30 Barak A J, Beckenhauer H C, Junnila M, Tuma D J. Dietary betaine promotes generation of hepatic S-adenosylmethionine and protects the liver from ethanol-induced fatty infiltration.  Alcohol Clin Exp Res. 1993;  17(3) 552-555
  • 31 Ji C, Kaplowitz N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice.  Gastroenterology. 2003;  124(5) 1488-1499
  • 32 Ji C, Shinohara M, Vance D et al.. Effect of transgenic extrahepatic expression of betaine-homocysteine methyltransferase on alcohol or homocysteine-induced fatty liver.  Alcohol Clin Exp Res. 2008;  32(6) 1049-1058
  • 33 Martinez-Chantar M L, Vazquez-Chantada M, Ariz U et al.. Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice.  Hepatology. 2008;  47(4) 1191-1199
  • 34 Avila M A, Berasain C, Torres L et al.. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma.  J Hepatol. 2000;  33(6) 907-914
  • 35 Tseng T L, Shih Y P, Huang Y C et al.. Genotypic and phenotypic characterization of a putative tumor susceptibility gene, GNMT, in liver cancer.  Cancer Res. 2003;  63(3) 647-654
  • 36 Bhagwandeen B S, Apte M, Manwarring L, Dickeson J. Endotoxin induced hepatic necrosis in rats on an alcohol diet.  J Pathol. 1987;  152(1) 47-53
  • 37 Wheeler M D, Kono H, Yin M et al.. The role of Kupffer cell oxidant production in early ethanol-induced liver disease.  Free Radic Biol Med. 2001;  31(12) 1544-1549
  • 38 Gustot T, Lemmers A, Moreno C et al.. Differential liver sensitization to toll-like receptor pathways in mice with alcoholic fatty liver.  Hepatology. 2006;  43(5) 989-1000
  • 39 Cao Q, Batey R, Pang G, Clancy R. Ethanol-altered liver-associated T cells mediate liver injury in rats administered Concanavalin A (Con A) or lipopolysaccharide (LPS).  Alcohol Clin Exp Res. 1999;  23(10) 1660-1667
  • 40 Yokoyama H, Ishii H, Nagata S, Kato S, Kamegaya K, Tsuchiya M. Experimental hepatitis induced by ethanol after immunization with acetaldehyde adducts.  Hepatology. 1993;  17(1) 14-19
  • 41 Yokoyama H, Nagata S, Moriya S et al.. Hepatic fibrosis produced in guinea pigs by chronic ethanol administration and immunization with acetaldehyde adducts.  Hepatology. 1995;  21(5) 1438-1442
  • 42 Tuma D J. Role of malondialdehyde-acetaldehyde adducts in liver injury.  Free Radic Biol Med. 2002;  32(4) 303-308
  • 43 Thiele G M, Duryee M J, Freeman T L et al.. Rat sinusoidal liver endothelial cells (SECs) produce pro-fibrotic factors in response to adducts formed from the metabolites of ethanol.  Biochem Pharmacol. 2005;  70(11) 1593-1600
  • 44 Lu Y, Cederbaum A I. Enhancement by pyrazole of lipopolysaccharide-induced liver injury in mice: role of cytochrome P450 2E1 and 2A5.  Hepatology. 2006;  44(1) 263-274
  • 45 Bosma A, Brouwer A, Seifert W F, Knook D L. Synergism between ethanol and carbon tetrachloride in the generation of liver fibrosis.  J Pathol. 1988;  156(1) 15-21
  • 46 Hall P D, Plummer J L, Ilsley A H, Cousins M J. Hepatic fibrosis and cirrhosis after chronic administration of alcohol and “low-dose” carbon tetrachloride vapor in the rat.  Hepatology. 1991;  13(5) 815-819
  • 47 Maddrey W C. Hepatic effects of acetaminophen. Enhanced toxicity in alcoholics.  J Clin Gastroenterol. 1987;  9(2) 180-185
  • 48 Hanawa N, Shinohara M, Saberi B, Gaarde W A, Han D, Kaplowitz N. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury.  J Biol Chem. 2008;  283(20) 13565-13577
  • 49 McCuskey R S, Bethea N W, Wong J et al.. Ethanol binging exacerbates sinusoidal endothelial and parenchymal injury elicited by acetaminophen.  J Hepatol. 2005;  42(3) 371-377
  • 50 von M C, Beier J I, Guo L, Kaiser J P, Arteel G E. Contribution of the sympathetic hormone epinephrine to the sensitizing effect of ethanol on LPS-induced liver damage in mice.  Am J Physiol Gastrointest Liver Physiol. 2008;  294(5) G1227-G1234
  • 51 Li J, French B A, Fu P, French S W. Liver necrosis induced by thyroid hormone administration in rats fed ethanol.  Exp Mol Pathol. 2001;  71(1) 79-88
  • 52 Yuki T, Thurman R G. The swift increase in alcohol metabolism. Time course for the increase in hepatic oxygen uptake and the involvement of glycolysis.  Biochem J. 1980;  186(1) 119-126
  • 53 Israel Y, Kalant H, Orrego H, Khanna J M, Videla L, Phillips J M. Experimental alcohol-induced hepatic necrosis: suppression by propylthiouracil.  Proc Natl Acad Sci U S A. 1975;  72(3) 1137-1141
  • 54 Bergheim I, Guo L, Davis M A et al.. Metformin prevents alcohol-induced liver injury in the mouse: critical role of plasminogen activator inhibitor-1.  Gastroenterology. 2006;  130(7) 2099-2112
  • 55 Seth D, Hogg P J, Gorrell M D, McCaughan G W, Haber P S. Direct effects of alcohol on hepatic fibrinolytic balance: implications for alcoholic liver disease.  J Hepatol. 2008;  48(4) 614-627
  • 56 Tsukamoto H, Xi X P. Incomplete compensation of enhanced hepatic oxygen consumption in rats with alcoholic centrilobular liver necrosis.  Hepatology. 1989;  9(2) 302-306
  • 57 Yamada S, Iida T, Tabata T et al.. Alcoholic fatty liver differentially induces a neutrophil-chemokine and hepatic necrosis after ischemia-reperfusion in rat.  Hepatology. 2000;  32(2) 278-288
  • 58 French S W, Benson N C, Sun P S. Centrilobular liver necrosis induced by hypoxia in chronic ethanol-fed rats.  Hepatology. 1984;  4(5) 912-917
  • 59 Moriya K, Nakagawa K, Santa T et al.. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis.  Cancer Res. 2001;  61(11) 4365-4370
  • 60 Perlemuter G, Sabile A, Letteron P et al.. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis.  FASEB J. 2002;  16(2) 185-194
  • 61 Kawaguchi T, Yoshida T, Harada M et al.. Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3.  Am J Pathol. 2004;  165(5) 1499-1508
  • 62 Miyamoto H, Moriishi K, Moriya K et al.. Involvement of the PA28gamma-dependent pathway in insulin resistance induced by hepatitis C virus core protein.  J Virol. 2007;  81(4) 1727-1735
  • 63 Banerjee S, Saito K, Ait-Goughoulte M, Meyer K, Ray R B, Ray R. Hepatitis C virus core protein upregulates serine phosphorylation of insulin receptor substrate-1 and impairs the downstream akt/protein kinase B signaling pathway for insulin resistance.  J Virol. 2008;  82(6) 2606-2612
  • 64 Koike K, Tsutsumi T, Miyoshi H et al.. Molecular basis for the synergy between alcohol and hepatitis C virus in hepatocarcinogenesis.  J Gastroenterol Hepatol. 2008;  23(Suppl 1) S87-S91
  • 65 Machida K, Tsukamoto H, Mkrtchyan H et al.. Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog.  Proc Natl Acad Sci U S A. 2009;  106(5) 1548-1553
  • 66 Morgan K, French S W, Morgan T R. Production of a cytochrome P450 2E1 transgenic mouse and initial evaluation of alcoholic liver damage.  Hepatology. 2002;  36(1) 122-134
  • 67 Lamle J, Marhenke S, Borlak J et al.. Nuclear factor-eythroid 2-related factor 2 prevents alcohol-induced fulminant liver injury.  Gastroenterology. 2008;  134(4) 1159-1168
  • 68 Kessova I G, Ho Y S, Thung S, Cederbaum A I. Alcohol-induced liver injury in mice lacking Cu, Zn-superoxide dismutase.  Hepatology. 2003;  38(5) 1136-1145
  • 69 El-Assal O, Hong F, Kim W H, Radaeva S, Gao B. IL-6-deficient mice are susceptible to ethanol-induced hepatic steatosis: IL-6 protects against ethanol-induced oxidative stress and mitochondrial permeability transition in the liver.  Cell Mol Immunol. 2004;  1(3) 205-211
  • 70 Esfandiari F, Medici V, Wong D H et al.. Methyl regulation of ethanol induced steatosis in CBS deficient mouse.  Alcohol Clin Exp Res. 2008;  343A
  • 71 Iimuro Y, Frankenberg M V, Arteel G E, Bradford B U, Wall C A, Thurman R G. Female rats exhibit greater susceptibility to early alcohol-induced liver injury than males.  Am J Physiol. 1997;  272(5 Pt 1) G1186-G1194
  • 72 Baraona E, Abittan C S, Dohmen K et al.. Gender differences in pharmacokinetics of alcohol.  Alcohol Clin Exp Res. 2001;  25(4) 502-507
  • 73 Kono H, Wheeler M D, Rusyn I et al.. Gender differences in early alcohol-induced liver injury: role of CD14, NF-kappaB, and TNF-alpha.  Am J Physiol Gastrointest Liver Physiol. 2000;  278(4) G652-G661
  • 74 Ikejima K, Enomoto N, Iimuro Y et al.. Estrogen increases sensitivity of hepatic Kupffer cells to endotoxin.  Am J Physiol. 1998;  274(4 Pt 1) G669-G676
  • 75 Donohue T M, Curry-McCoy T V, Nanji A A et al.. Lysosomal leakage and lack of adaptation of hepatoprotective enzyme contribute to enhanced susceptibility to ethanol-induced liver injury in female rats.  Alcohol Clin Exp Res. 2007;  31(11) 1944-1952
  • 76 Banerjee A, Apte U M, Smith R, Ramaiah S K. Higher neutrophil infiltration mediated by osteopontin is a likely contributing factor to the increased susceptibility of females to alcoholic liver disease.  J Pathol. 2006;  208(4) 473-485
  • 77 Chan K, Han X D, Kan Y W. An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen.  Proc Natl Acad Sci U S A. 2001;  98(8) 4611-4616
  • 78 Cullinan S B, Zhang D, Hannink M, Arvisais E, Kaufman R J, Diehl J A. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival.  Mol Cell Biol. 2003;  23(20) 7198-7209
  • 79 Horiguchi N, Wang L, Mukhopadhyay P et al.. Cell type-dependent pro- and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury.  Gastroenterology. 2008;  134(4) 1148-1158
  • 80 Takada A, Matsuda Y, Takase S. Effects of dietary fat on alcohol-pyrazole hepatitis in rats: the pathogenetic role of the nonalcohol dehydrogenase pathway in alcohol-induced hepatic cell injury.  Alcohol Clin Exp Res. 1986;  10(4) 403-411
  • 81 Karaa A, Thompson K J, McKillop I H, Clemens M G, Schrum L W. S-adenosyl-L-methionine attenuates oxidative stress and hepatic stellate cell activation in an ethanol-LPS-induced fibrotic rat model.  Shock. 2008;  30(2) 197-205

Hidekazu TsukamotoD.V.M. Ph.D. 

Keck School of Medicine of the University of Southern California

1333 San Pablo Street, MMR-402, Los Angeles, CA 90033

Email: htsukamo@usc.edu