ABSTRACT
Developments in genomic medicine will likely explain much of what is now considered idiopathic male infertility. Indeed, our understanding of the genetic defects that cause infertility is no longer confined to chromosomal aneuploidies (e.g., Klinefelter syndrome) and single-gene defects (cystic fibrosis and congenital absence of the vas deferens). The past decade has seen that isolated Y-chromosomal loci can influence spermatogenesis (AZF regions) and that the human X chromosome is likely to be an important source of spermatogenesis genes. More recently, the finding that faulty recombination occurs in male infertility has large implications not only for the cause of the infertility but also for the use of affected gametes. Indeed, as our understanding of genetic infertility matures, so too will the importance and complexity of genetic counseling and testing for patients who use assisted reproduction.
KEYWORDS
Male infertility - oligospermia - Y chromosome - karyotype - azoospermia
REFERENCES
1
Palermo G D, Schlegel P N, Sills E S et al..
Births after intracytoplasmic injection of sperm obtained by testicular extraction from men with nonmosaic Klinefelter's syndrome.
N Engl J Med.
1998;
338
588-590
2
Denschlag D, Tempfer C, Kunze M, Wolff G, Keck C.
Assisted reproductive techniques in patients with Klinefelter syndrome: a critical review.
Fertil Steril.
2004;
82
775-779
3
Lowe X, Eskenazi B, Nelson D O et al..
Frequency of XY sperm increases with age in fathers of boys with Klinefelter syndrome.
Am J Hum Genet.
2001;
69
1046-1054
4
Jacobs P A, Hassold T J, Whittington E et al..
Klinefelter's syndrome: an analysis of the origin of the additional sex chromosome using molecular probes.
Ann Hum Genet.
1988;
52(Pt 2)
93-109
5
Bergere M, Wainer R, Nataf V et al..
Biopsied testis cells of four 47,XXY patients: fluorescence in-situ hybridization and ICSI results.
Hum Reprod.
2002;
17
32-37
6
Blanco J, Egozcue J, Vidal F.
Meiotic behaviour of the sex chromosomes in three patients with sex chromosome anomalies (47,XXY, mosaic 46,XY/47,XXY and 47,XYY) assessed by fluorescence in-situ hybridization.
Hum Reprod.
2001;
16
887-892
7
Shi Q, Martin R H.
Aneuploidy in human spermatozoa: FISH analysis in men with constitutional chromosomal abnormalities, and in infertile men.
Reproduction.
2001;
121
655-666
8
Gonsalves J, Turek P J, Schlegel P N et al..
Recombination in men with Klinefelter syndrome.
Reproduction.
2005;
130
223-229
9
Walzer S, Gerald P S.
Social class and frequency of XYY and XXY.
Science.
1975;
190
1228-1229
10
Palanduz S, Aktan M, Ozturk S et al..
47,XYY karyotype in acute myeloid leukemia.
Cancer Genet Cytogenet.
1998;
106
76-77
11
Shi Q, Martin R H.
Multicolor fluorescence in situ hybridization analysis of meiotic chromosome segregation in a 47,XYY male and a review of the literature.
Am J Med Genet.
2000;
93
40-46
12
Wang J Y, Samura O, Zhen D K et al..
Fluorescence in-situ hybridization analysis of chromosomal constitution in spermatozoa from a mosaic 47,XYY/46,XY male.
Mol Hum Reprod.
2000;
6
665-668
13
Han T H, Ford J H, Flaherty S P, Webb G C, Matthews C D.
A fluorescent in situ hybridization analysis of the chromosome constitution of ejaculated sperm in a 47,XYY male.
Clin Genet.
1994;
45
67-70
14
Schweikert H U, Weissbach L, Leyendecker G et al..
Clinical, endocrinological, and cytological characterization of two 46, XX males.
J Clin Endocrinol Metab.
1982;
54
745-752
15
Van der Auwera B, Van Roy N, De Paepe A et al..
Molecular cytogenetic analysis of XX males using Y-specific DNA sequences, including SRY.
Hum Genet.
1992;
89
23-28
16
Wegner H E, Klan R, Wegner R D et al..
Mixed gonadal dysgenesis associated with unilateral cavernosal fibrosis and presenting as a cystic lower abdominal mass.
Eur Urol.
1993;
24
428-430
17
Eriksson A, Tohonen V, Wedell A, Nordqvist K.
Isolation of the human testatin gene and analysis in patients with abnormal gonadal development.
Mol Hum Reprod.
2002;
8
8-15
18
Rajender S, Thangaraj K, Gupta N J et al..
A novel human sex-determining gene linked to Xp11.21–11.23.
J Clin Endocrinol Metab.
2006;
91
4028-4036
19
Van Assche E, Bonduelle M, Tournaye H et al..
Cytogenetics of infertile men.
Hum Reprod.
1996;
11(Suppl 4)
1-24
discussion 25-26
20
Tiepolo L, Zuffardi O.
Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm.
Hum Genet.
1976;
34
119-124
21
Vogt P H, Edelmann A, Kirsch S et al..
Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11.
Hum Mol Genet.
1996;
5
933-943
22
Reijo R, Alagappan R K, Patrizio P, Page D C.
Severe oligozoospermia resulting from deletions of azoospermia factor gene on Y chromosome.
Lancet.
1996;
347
1290-1293
23
Kostiner D R, Turek P J, Reijo R A.
Male infertility: analysis of the markers and genes on the human Y chromosome.
Hum Reprod.
1998;
13
3032-3038
24
Kleiman S E, Bar-Shira Maymon B, Yogev L, Paz G, Yavetz H.
The prognostic role of the extent of Y microdeletion on spermatogenesis and maturity of Sertoli cells.
Hum Reprod.
2001;
16
399-402
25
Sun C, Skaletsky H, Birren B et al..
An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y.
Nat Genet.
1999;
23
429-432
26
Foresta C, Moro E, Ferlin A.
Prognostic value of Y deletion analysis. The role of current methods.
Hum Reprod.
2001;
16
1543-1547
27
Ferlin A, Moro E, Onisto M et al..
Absence of testicular DAZ gene expression in idiopathic severe testiculopathies.
Hum Reprod.
1999;
14
2286-2292
28
Hopps C V, Mielnik A, Goldstein M et al..
Detection of sperm in men with Y chromosome microdeletions of the AZFa, AZFb and AZFc regions.
Hum Reprod.
2003;
18
1660-1665
29
Krausz C, Bussani-Mastellone C, Granchi S et al..
Screening for microdeletions of Y chromosome genes in patients undergoing intracytoplasmic sperm injection.
Hum Reprod.
1999;
14
1717-1721
30
Turek P J, Ljung B M, Cha I, Conaghan J.
Diagnostic findings from testis fine needle aspiration mapping in obstructed and nonobstructed azoospermic men.
J Urol.
2000;
163
1709-1716
31
van Golde R J, van der Avoort I A, Tuerlings J H et al..
Phenotypic characteristics of male subfertility and its familial occurrence.
J Androl.
2004;
25
819-823
32
Choi J M, Chung P, Veeck L et al..
AZF microdeletions of the Y chromosome and in vitro fertilization outcome.
Fertil Steril.
2004;
81
337-341
33
Kihaile P E, Kisanga R E, Aoki K et al..
Embryo outcome in Y-chromosome microdeleted infertile males after ICSI.
Mol Reprod Dev.
2004;
68
176-181
34
Oates R D, Silber S, Brown L G, Page D C.
Clinical characterization of 42 oligospermic or azoospermic men with microdeletion of the AZFc region of the Y chromosome, and of 18 children conceived via ICSI.
Hum Reprod.
2002;
17
2813-2824
35
Mulhall J P, Reijo R, Alagappan R et al..
Azoospermic men with deletion of the DAZ gene cluster are capable of completing spermatogenesis: fertilization, normal embryonic development and pregnancy occur when retrieved testicular spermatozoa are used for intracytoplasmic sperm injection.
Hum Reprod.
1997;
12
503-508
36
Simoni M, Gromoll J, Dworniczak B et al..
Screening for deletions of the Y chromosome involving the DAZ (Deleted in AZoospermia) gene in azoospermia and severe oligozoospermia.
Fertil Steril.
1997;
67
542-547
37
Cantu J M, Diaz M, Moller M et al..
Azoospermia and duplication 3qter as distinct consequences of a familial t(X;3) (q26;q13.2).
Am J Med Genet.
1985;
20
677-684
38
Madan K.
Balanced structural changes involving the human X: effect on sexual phenotype.
Hum Genet.
1983;
63
216-221
39
Mattei M G, Mattei J F, Ayme S, Giraud F.
X-autosome translocations: cytogenetic characteristics and their consequences.
Hum Genet.
1982;
61
295-309
40
Nemeth A H, Gallen I W, Crocker M, Levy E, Maher E.
Klinefelter-like phenotype and primary infertility in a male with a paracentric Xq inversion.
J Med Genet.
2002;
39
E28
41
Lee S, Lee S H, Chung T G et al..
Molecular and cytogenetic characterization of two azoospermic patients with X-autosome translocation.
J Assist Reprod Genet.
2003;
20
385-389
42
Wang P J, McCarrey J R, Yang F, Page D C.
An abundance of X-linked genes expressed in spermatogonia.
Nat Genet.
2001;
27
422-426
43
Raverot G, Lejeune H, Kotlar T, Pugeat M, Jameson J L.
X-linked sex-determining region Y box 3 (SOX3) gene mutations are uncommon in men with idiopathic oligoazoospermic infertility.
J Clin Endocrinol Metab.
2004;
89
4146-4148
44
Olesen C, Silber J, Eiberg H et al..
Mutational analysis of the human FATE gene in 144 infertile men.
Hum Genet.
2003;
113
195-201
45
Schneider-Gadicke A, Beer-Romero P, Brown L G et al..
Putative transcription activator with alternative isoforms encoded by human ZFX gene.
Nature.
1989;
342
708-711
46
Luoh S W, Bain P A, Polakiewicz R D et al..
Zfx mutation results in small animal size and reduced germ cell number in male and female mice.
Development.
1997;
124
2275-2284
47
Buchter D, Behre H M, Kliesch S, Nieschlag E.
Pulsatile GnRH or human chorionic gonadotropin/human menopausal gonadotropin as effective treatment for men with hypogonadotropic hypogonadism: a review of 42 cases.
Eur J Endocrinol.
1998;
139
298-303
48
Bhasin S, Ma K, Sinha I et al..
The genetic basis of male infertility.
Endocrinol Metab Clin North Am.
1998;
27
783-805
, viii
49
Layman L C, Cohen D P, Jin M et al..
Mutations in gonadotropin-releasing hormone receptor gene cause hypogonadotropic hypogonadism.
Nat Genet.
1998;
18
14-15
50
Bick D, Franco B, Sherins R J et al..
Brief report: intragenic deletion of the KALIG-1 gene in Kallmann's syndrome.
N Engl J Med.
1992;
326
1752-1755
51
Guo W, Burris T P, McCabe E R.
Expression of DAX-1, the gene responsible for X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism, in the hypothalamic-pituitary-adrenal/gonadal axis.
Biochem Mol Med.
1995;
56
8-13
52
Jackson R S, Creemers J W, Ohagi S et al..
Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene.
Nat Genet.
1997;
16
303-306
53
Dode C, Levilliers J, Dupont J M et al..
Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome.
Nat Genet.
2003;
33
463-465
54
Oliveira L M, Seminara S B, Beranova M et al..
The importance of autosomal genes in Kallmann syndrome: genotype-phenotype correlations and neuroendocrine characteristics.
J Clin Endocrinol Metab.
2001;
86
1532-1538
55
Jager R J, Anvret M, Hall K, Scherer G.
A human XY female with a frame shift mutation in the candidate testis-determining gene SRY.
Nature.
1990;
348
452-454
56
Mittwoch U.
Sex determination and sex reversal: genotype, phenotype, dogma and semantics.
Hum Genet.
1992;
89
467-479
57
Berta P, Hawkins J R, Sinclair A H et al..
Genetic evidence equating SRY and the testis-determining factor.
Nature.
1990;
348
448-450
58
Sinclair A H, Berta P, Palmer M S et al..
A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif.
Nature.
1990;
346
240-244
59
Yu R N, Ito M, Saunders T L, Camper S A, Jameson J L.
Role of Ahch in gonadal development and gametogenesis.
Nat Genet.
1998;
20
353-357
60
Ottolenghi C, Pelosi E, Tran J et al..
Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells.
Hum Mol Genet.
2007;
16
2795-2804
61
Mak V, Jarvi K A.
The genetics of male infertility.
J Urol.
1996;
156
1245-1256
discussion 1256-1247
62
Kerem B, Rommens J M, Buchanan J A et al..
Identification of the cystic fibrosis gene: genetic analysis.
Science.
1989;
245
1073-1080
63
Danziger K L, Black L D, Keiles S B, Kammesheidt A, Turek P J.
Improved detection of cystic fibrosis mutations in infertility patients with DNA sequence analysis.
Hum Reprod.
2004;
19
540-546
64
Kupker W, Schwinger E, Hiort O et al..
Genetics of male subfertility: consequences for the clinical work-up.
Hum Reprod.
1999;
14(Suppl 1)
24-37
65
Jequier A M, Ansell I D, Bullimore N J.
Congenital absence of the vasa deferentia presenting with infertility.
J Androl.
1985;
6
15-19
66
Stuhrmann M, Dork T, Fruhwirth M et al..
Detection of 100% of the CFTR mutations in 63 CF families from Tyrol.
Clin Genet.
1997;
52
240-246
67
Xu W M, Shi Q X, Chen W Y et al..
Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility.
Proc Natl Acad Sci U S A.
2007;
104
9816-9821
68
Donat R, McNeill A S, Fitzpatrick D R, Hargreave T B.
The incidence of cystic fibrosis gene mutations in patients with congenital bilateral absence of the vas deferens in Scotland.
Br J Urol.
1997;
79
74-77
69
Phillipson G T, Petrucco O M, Matthews C D.
Congenital bilateral absence of the vas deferens, cystic fibrosis mutation analysis and intracytoplasmic sperm injection.
Hum Reprod.
2000;
15
431-435
70
Castellani C, Bonizzato A, Pradal U et al..
Evidence of mild respiratory disease in men with congenital absence of the vas deferens.
Respir Med.
1999;
93
869-875
71
Noone P G, Knowles M R.
'CFTR-opathies': disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations.
Respir Res.
2001;
2
328-332
72
Kiesewetter S, Macek Jr M, Davis C et al..
A mutation in CFTR produces different phenotypes depending on chromosomal background.
Nat Genet.
1993;
5
274-278
73
Chu C S, Trapnell B C, Curristin S, Cutting G R, Crystal R G.
Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA.
Nat Genet.
1993;
3
151-156
74
Mickle J, Milunsky A, Amos J A, Oates R D.
Congenital unilateral absence of the vas deferens: a heterogeneous disorder with two distinct subpopulations based upon aetiology and mutational status of the cystic fibrosis gene.
Hum Reprod.
1995;
10
1728-1735
75
McCallum T, Milunsky J, Munarriz R et al..
Unilateral renal agenesis associated with congenital bilateral absence of the vas deferens: phenotypic findings and genetic considerations.
Hum Reprod.
2001;
16
282-288
76
Jarvi K, Zielenski J, Wilschanski M et al..
Cystic fibrosis transmembrane conductance regulator and obstructive azoospermia.
Lancet.
1995;
345
1578
77
Shkolny D L, Beitel L K, Ginsberg J et al..
Discordant measures of androgen-binding kinetics in two mutant androgen receptors causing mild or partial androgen insensitivity, respectively.
J Clin Endocrinol Metab.
1999;
84
805-810
78
Aiman J, Griffin J E, Gazak J M, Wilson J D, MacDonald P C.
Androgen insensitivity as a cause of infertility in otherwise normal men.
N Engl J Med.
1979;
300
223-227
79
Yong E L, Ng S C, Roy A C, Yun G, Ratnam S S.
Pregnancy after hormonal correction of severe spermatogenic defect due to mutation in androgen receptor gene.
Lancet.
1994;
344
826-827
80
Cohen-Haguenauer O, Picard J Y, Mattei M G et al..
Mapping of the gene for anti-mullerian hormone to the short arm of human chromosome 19.
Cytogenet Cell Genet.
1987;
44
2-6
81
Imbeaud S, Carre-Eusebe D, Rey R et al..
Molecular genetics of the persistent mullerian duct syndrome: a study of 19 families.
Hum Mol Genet.
1994;
3
125-131
82
Imbeaud S, Faure E, Lamarre I et al..
Insensitivity to anti-mullerian hormone due to a mutation in the human anti-mullerian hormone receptor.
Nat Genet.
1995;
11
382-388
83
Zimmermann S, Steding G, Emmen J M et al..
Targeted disruption of the Insl3 gene causes bilateral cryptorchidism.
Mol Endocrinol.
1999;
13
681-691
84
Tomboc M, Lee P A, Mitwally M F et al..
Insulin-like 3/relaxin-like factor gene mutations are associated with cryptorchidism.
J Clin Endocrinol Metab.
2000;
85
4013-4018
85
Baker S M, Bronner C E, Zhang L et al..
Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis.
Cell.
1995;
82
309-319
86
Nudell D, Castillo M, Turek P J, Pera R R.
Increased frequency of mutations in DNA from infertile men with meiotic arrest.
Hum Reprod.
2000;
15
1289-1294
87
Maduro M R, Casella R, Kim E et al..
Microsatellite instability and defects in mismatch repair proteins: a new aetiology for Sertoli cell-only syndrome.
Mol Hum Reprod.
2003;
9
61-68
88
Coop G, Przeworski M.
An evolutionary view of human recombination.
Natl Rev.
2007;
8
23-34
89
Hassold T, Hunt P.
To err (meiotically) is human: the genesis of human aneuploidy.
Natl Rev.
2001;
2
280-291
90
Baker S M, Plug A W, Prolla T A et al..
Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over.
Nat Genet.
1996;
13
336-342
91
Lynn A, Koehler K E, Judis L et al..
Covariation of synaptonemal complex length and mammalian meiotic exchange rates.
Science.
2002;
296
2222-2225
92
Marcon E, Moens P.
MLH1p and MLH3p localize to precociously induced chiasmata of okadaic-acid-treated mouse spermatocytes.
Genetics.
2003;
165
2283-2287
93
Judis L, Chan E R, Schwartz S, Seftel A, Hassold T.
Meiosis I arrest and azoospermia in an infertile male explained by failure of formation of a component of the synaptonemal complex.
Fertil Steril.
2004;
81
205-209
94
Gonsalves J, Sun F, Schlegel P N et al..
Defective recombination in infertile men.
Hum Mol Genet.
2004;
13
2875-2883
95
Topping D, Brown P, Judis L et al..
Synaptic defects at meiosis I and non-obstructive azoospermia.
Hum Reprod.
2006;
21
3171-3177
96
Sun F, Greene C, Turek P J et al..
Immunofluorescent synaptonemal complex analysis in azoospermic men.
Cytogenet Genome Res.
2005;
111
366-370
97
Sun F, Oliver-Bonet M, Liehr T et al..
Analysis of non-crossover bivalents in pachytene cells from 10 normal men.
Hum Reprod.
2006;
21
2335-2339
98
Sun F, Oliver-Bonet M, Liehr T et al..
Variation in MLH1 distribution in recombination maps for individual chromosomes from human males.
Hum Mol Genet.
2006;
15
2376-2391
99
Kaplan K D, Brown M, Croughan M S, Turek P J.
The relative accuracy of a questionnaire compared with pedigree analysis in genetic risk assessment for infertility.
J Urol.
2008;
179
1499-1505
Paul J TurekM.D.
The Turek Clinic, 55 Francisco Street
Suite 300, San Francisco, CA 94133
eMail: drpaulturek@gmail.com