Subscribe to RSS
DOI: 10.1055/s-0028-1109168
© Georg Thieme Verlag KG Stuttgart · New York
Pharmakokinetische MRT der Prostata: Parameter zur Unterscheidung von Low-grade- und High-grade-Prostatakarzinomen
Pharmacokinetic MRI of the Prostate: Parameters for Differentiating Low-Grade and High-Grade Prostate CancerPublication History
eingereicht: 17.9.2008
angenommen: 30.12.2008
Publication Date:
07 April 2009 (online)
Zusammenfassung
Ziel: Es sollte geprüft werden, ob die pharmakokinetischen MRT-Parameter Perfusion, Blutvolumen, mittlere Transit Zeit (MTT), interstitielles Volumen, Permeabilität, Extraktionskoeffizient, Verzögerungszeit und Dispersion für die Unterscheidung von Low-grade (Gleason-Score ≤ 6) und High-grade Prostatakarzinomen (Gleason-Score ≥ 7) geeignet sind. Material und Methoden: 42 Patienten mit stanzbioptisch gesichertem Prostatakarzinom (PSA: 2,7 bis 31,4 ng/ml) wurden vor geplanter Prostatektomie mit der dynamischen kontrastmittelgestützten inversionspräparierten Dual-Contrast-Gradienten-Echo-Sequenz (zeitliche Auflösung: 1,65 s) bei 1,5 Tesla mit der kombinierten Endorektal-Body-Phased-Array-Spule untersucht. Die Berechnung der Parameterkarten erfolgte mit einem sequenziellen 3-Kompartiment-Modell und entsprechenden Nachverarbeitungsalgorithmen. Bei 32 Patienten konnten 41 Prostatakarzinomareale (15 × low-grade, 26 × high-grade) nach Korrelation mit den Prostatektomiepräparaten ausgewertet werden. Ergebnisse: Low-grade Prostatakarzinome zeigten im Mittel ein größeres Blutvolumen (1,76 % vs. 1,64 %, p = 0,039), eine längere MTT (6,39 s vs. 3,25 s, p < 0,001) und eine geringere Permeabilität (2,57 min-1 vs. 3,86 min-1, p = 0,011) als High-grade Prostatakarzinome. Kein statistisch signifikanter Unterschied fand sich für die Perfusion (p = 0,069), für das interstitielle Volumen (p = 0,849), für den Extraktionskoeffzienten (p = 0,615), für die Verzögerungszeit (p = 0,489) und die Dispersion (p = 0,306). Schlussfolgerungen: Blutvolumen, MTT und Permeabilität sind für eine Unterscheidung von Low-grade und High-grade Prostatakarzinomen geeignet. Im Rahmen des Therapieansatzes der „active surveillance” könnten diese Parameter dazu dienen, einen Progress im MRT nachzuweisen.
Abstract
Purpose: To investigate whether pharmacokinetic MRI parameters ”perfusion, blood volume, mean transit time (MTT), interstitial volume, permeability, extraction coefficient, delay, and dispersion” allow the differentiation of low-grade (Gleason score ≤ 6) and high-grade (Gleason score ≥ 7) prostate cancer. Materials and Method: Forty-two patients with prostate cancer verified by biopsy (PSA 2.7 to 31.4 ng/ml) and scheduled for prostatectomy underwent MRI at 1.5 Tesla using the dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence (temporal resolution, 1.65 s) and a combined endorectal body phased array coil. Parametric maps were computed using a sequential 3-compartment model and the corresponding post-processing algorithms. A total of 41 areas of prostate cancer (15 low-grade, 26 high-grade cancers) in 32 patients were able to be correlated with the prostatectomy specimens and were included in the analysis. Results: Low-grade prostate cancers had a higher mean blood volume (1.76 % vs. 1.64 %, p = 0.039), longer MTT (6.39 s vs. 3.25 s, p < 0.001), and lower mean permeability (2.57 min-1 vs. 3.86 min-1, p = 0.011) than high-grade cancers. No statistically significant difference was found for perfusion (p = 0.069), interstitial volume (p = 0.849), extraction coefficient (p = 0.615), delay (p = 0.489), and dispersion (p = 0.306). Conclusions: Blood volume, MTT, and permeability allow the differentiation of low-grade and high-grade prostate cancer. They may be used to detect cancer progression by MRI in patients managed by active surveillance.
Key words
prostate - MR diffusion/perfusion - MR functional imaging
Literatur
- 1 Stamey T A, Yang N, Hay A R. et al . Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med. 1987; 317 909-916
- 2 Jemal A, Siegel R, Ward E. et al . Cancer statistics, 2008. CA Cancer J Clin. 2008; 58 71-96
- 3 Etzioni R, Penson D F, Legler J M. et al . Overdiagnosis due to prostate-specific antigen screening: lessons from U. S. prostate cancer incidence trends. J Natl Cancer Inst. 2002; 94 981-990
- 4 Choo R, Klotz L, Danjoux C. et al . Feasibility study: watchful waiting for localized low to intermediate grade prostate carcinoma with selective delayed intervention based on prostate specific antigen, histological and/or clinical progression. J Urol. 2002; 167 1664-1669
- 5 Dall’Era M A, Cooperberg M R, Chan J M. et al . Active surveillance for early-stage prostate cancer: review of the current literature. Cancer. 2008; 112 1650-1659
- 6 Stephenson A J, Scardino P T, Eastham J A. et al . Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Natl Cancer Inst. 2006; 98 715-717
- 7 Partin A W, Mangold L A, Lamm D M. et al . Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology. 2001; 58 843-848
- 8 Kulkarni G S, Lockwood G, Evans A. et al . Clinical predictors of Gleason score upgrading: implications for patients considering watchful waiting, active surveillance, or brachytherapy. Cancer. 2007; 109 2432-2438
- 9 Whittemore A S, Keller J B, Betensky R. Low-grade, latent prostate cancer volume: predictor of clinical cancer incidence?. J Natl Cancer Inst. 1991; 83 1231-1235
- 10 Venkitaraman R, Norman A, Woode-Amissah R. et al . Predictors of histological disease progression in untreated, localized prostate cancer. J Urol. 2007; 178 833-837
- 11 Prochnow D, Beyersdorff D, Warmuth C. et al . Implementation of a rapid inversion-prepared dual-contrast gradient echo sequence for quantitative dynamic contrast-enhanced magnetic resonance imaging of the human prostate. Magn Reson Imaging. 2005; 23 983-990
- 12 Franiel T, Ludemann L, Rudolph B. et al . Evaluation of normal prostate tissue, chronic prostatitis, and prostate cancer by quantitative perfusion analysis using a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence. Invest Radiol. 2008; 43 481-487
- 13 Heinrich M, Uder M. Nephrogene systemische fibrose nach Anwendung gadoliniumhaltiger Kontrastmittel – ein Statuspapier zum aktuellen Stand des Wissens. Fortschr Röntgenstr. 2007; 179 613-617
- 14 Griswold M A, Jakob P M, Chen Q. et al . Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial harmonics (SMASH). Magn Reson Med. 1999; 41 1236-1245
- 15 Rohlfing T, Russakoff D B, Denzler J. et al . Progressive attenuation fields: fast 2D-3D image registration without precomputation. Med Phys. 2005; 32 2870-2880
- 16 Tofts P S, Brix G, Buckley D L. et al . Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999; 10 223-232
- 17 Ludemann L, Grieger W, Wurm R. et al . Quantitative measurement of leakage volume and permeability in gliomas, meningiomas and brain metastases with dynamic contrast-enhanced MRI. Magn Reson Imaging. 2005; 23 833-841
- 18 Siegal J A, Yu E, Brawer M K. Topography of neovascularity in human prostate carcinoma. Cancer. 1995; 75 2545-2551
- 19 Calamante F, Gadian D G, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med. 2000; 44 466-473
- 20 Kershaw L E, Buckley D L. Precision in measurements of perfusion and microvascular permeability with T 1-weighted dynamic contrast-enhanced MRI. Magn Reson Med. 2006; 56 986-992
- 21 Gleason D F, Mellinger G T. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol. 1974; 111 58-64
- 22 Stamey T A, Freiha F S, McNeal J E. et al . Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer. Cancer. 1993; 71 933-938
- 23 Coakley F V, Chen I, Qayyum A. et al . Validity of prostate-specific antigen as a tumour marker in men with prostate cancer managed by watchful-waiting: correlation with findings at serial endorectal magnetic resonance imaging and spectroscopic imaging. BJU Int. 2007; 99 41-45
- 24 Kandirali E, Boran C, Serin E. et al . Association of extent and aggressiveness of inflammation with serum PSA levels and PSA density in asymptomatic patients. Urology. 2007; 70 743-747
- 25 Kawakami J, Siemens D R, Nickel J C. Prostatitis and prostate cancer: implications for prostate cancer screening. Urology. 2004; 64 1075-1080
- 26 Tarhan F, Orcun A, Kucukercan I. et al . Effect of prostatic massage on serum complexed prostate-specific antigen levels. Urology. 2005; 66 1234-1238
- 27 Wiesinger B, Lichy M P, Nagele U. et al . MR-Befundmuster der Prostata bei Patienten mit CCP Syndrom (chronic pelvic pain syndrome). Fortschr Röntgenstr. 2008; 180 621-630
- 28 Padhani A R, Dzik-Jurasz A. Perfusion MR imaging of extracranial tumor angiogenesis. Top Magn Reson Imaging. 2004; 15 41-57
- 29 Gilles R, Guinebretiere J M, Shapeero L G. et al . Assessment of breast cancer recurrence with contrast-enhanced subtraction MR imaging: preliminary results in 26 patients. Radiology. 1993; 188 473-478
- 30 Hawighorst H. Dynamic MR imaging in cervical carcinoma. Radiology. 1999; 213 617-618
- 31 Wang L, Mazaheri Y, Zhang J. et al . Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology. 2008; 246 168-176
- 32 Zakian K L, Sircar K, Hricak H. et al . Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology. 2005; 234 804-814
- 33 Desouza N M, Riches S F, Vanas N J. et al . Diffusion-weighted magnetic resonance imaging: a potential non-invasive marker of tumour aggressiveness in localized prostate cancer. Clin Radiol. 2008; 63 774-782
- 34 Barth P J, Weingartner K, Kohler H H. et al . Assessment of the vascularization in prostatic carcinoma: a morphometric investigation. Hum Pathol. 1996; 27 1306-1310
- 35 Kety S S. Theory of blood-tissue exchange and its application to measurement of blood flow. Meth Med Res. 1960; 8 223-227
- 36 Weidner N, Carroll P R, Flax J. et al . Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol. 1993; 143 401-409
- 37 Gerlowski L E, Jain R K. Microvascular permeability of normal and neoplastic tissues. Microvasc Res. 1986; 31 288-305
- 38 Dvorak H F, Brown L F, Detmar M. et al . Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995; 146 1029-1039
- 39 Su M Y, Muhler A, Lao X. et al . Tumor characterization with dynamic contrast-enhanced MRI using MR contrast agents of various molecular weights. Magn Reson Med. 1998; 39 259-269
- 40 Bhujwalla Z M, Artemov D, Natarajan K. et al . Vascular differences detected by MRI for metastatic versus nonmetastatic breast and prostate cancer xenografts. Neoplasia. 2001; 3 143-153
- 41 Schned A R, Wheeler K J, Hodorowski C A. et al . Tissue-shrinkage correction factor in the calculation of prostate cancer volume. Am J Surg Pathol. 1996; 20 1501-1506
- 42 Nicholson B, Schaefer G, Theodorescu D. Angiogenesis in prostate cancer: biology and therapeutic opportunities. Cancer Metastasis Rev. 2001; 20 297-319
Dr. Tobias Franiel
Radiologie CCM, Charité – Universitätsmedizin Berlin
Schumannstraße 20 / 21
10098 Berlin
Phone: ++ 49/30/4 50 62 73 27
Fax: ++ 49/30/4 50 52 79 10
Email: tobias.franiel@charite.de