Semin Reprod Med 2009; 27(1): 090-102
DOI: 10.1055/s-0028-1108013
© Thieme Medical Publishers

Interferons and Uterine Receptivity

Fuller W. Bazer1 , Thomas E. Spencer1 , Gregory A. Johnson1
  • 1Center for Animal Biotechnology and Genomics, and Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
Further Information

Publication History

Publication Date:
05 February 2009 (online)

ABSTRACT

This article focuses on the potential roles of interferons (IFNs) in establishing uterine receptivity to implantation. A common feature of the peri-implantation period of pregnancy in most mammals is production of type I and/or type II IFNs by trophoblasts that induce and/or stimulate expression of an array of IFN-stimulate genes (ISGs). These effects range from pregnancy recognition signaling in ruminants through IFN tau to effects on cellular functions of the uterus and uterine vasculature. For actions of IFNs, progesterone (P4) is permissive to the expression of many effects and to the expression of ISGs that are induced directly by an IFN or induced by P4 and stimulated by an IFN in a temporal and/or cell-specific manner. Uterine receptivity to implantation is P4 dependent; however, implantation events are preceded by loss of expression of progesterone (PGR) and estrogen (ESR1) receptors by uterine epithelia. Therefore, P4 likely acts via PGR-positive stromal cells to induce expression of fibroblast growth factors-7 and -10 and/or hepatocyte growth factor (progestamedins) that then act via their respective receptors on uterine epithelia and trophectoderm to affect expression of ISGs. The permissive effects of P4 on the expression of ISGs and the effects of P4 to induce and IFNs to stimulate gene expression raise the question of whether uterine receptivity to implantation requires P4 and IFN to activate unique, but complementary, cell signaling pathways. Uterine receptivity to implantation, depending on species, involves changes in the expression of genes for the attachment of trophectoderm to the uterine lumenal epithelium (LE) and superficial glandular epithelium (sGE), modification of the phenotype of uterine stromal cells, the silencing of PGR and ESR1 genes, the suppression of genes for immune recognition, alterations in membrane permeability to enhance conceptus–maternal exchange of factors, increased vascularity of the endometrium, activation of genes for transport of nutrients into the uterine lumen, and enhanced signaling for pregnancy recognition. Differential expression of genes by uterine LE/sGE, mid- to deep-glandular epithelia (GE), and stromal cells in response to P4 and IFNs is likely to influence uterine receptivity to implantation in most mammals. Understanding the roles of IFNs in uterine receptivity for implantation is necessary to develop approaches to enhance reproductive health and fertility in humans and domestic animals.

REFERENCES

  • 1 Spencer T E, Johnson G A, Bazer F W, Burghardt R C, Palmarini M. Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses.  Reprod Fertil Dev. 2007;  19 65-78
  • 2 Fazleabas A T, Kim J J, Strakova Z. Implantation: embryonic signals and the modulation of the uterine environment—a review.  Placenta. 2004;  25(18) S26-S31
  • 3 Soares M J. The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal-fetal interface.  Reprod Biol Endocrinol. 2004;  2 51
  • 4 Bazer F W, Thatcher W W. Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2a by the uterine endometrium.  Prostaglandins. 1977;  14 397-401
  • 5 Slayden O D, Keater C S. Role of progesterone in nonhuman primate implantation.  Semin Reprod Med. 2007;  25 418-430
  • 6 Fazleabas A T. Physiology and pathology of implantation in the human and nonhuman primate.  Semin Reprod Med. 2007;  25 405-409
  • 7 Joyce M M, Burghardt R C, Geisert R D et al.. Pig conceptuses secrete estrogen and interferons to differentially regulate uterine STAT1 in a temporal and cell type-specific manner.  Endocrinology. 2007;  148(9) 4420-4431
  • 8 Platanias L C. Mechanisms of type-I- and type-II-interferon-mediated signalling.  Nat Rev Immunol. 2005;  5 375-386
  • 9 Choi Y, Johnson G A, Burghardt R C et al.. Interferon regulatory factor-two restricts expression of interferon-stimulated genes to the endometrial stroma and glandular epithelium of the ovine uterus.  Biol Reprod. 2001;  65 1038-1049
  • 10 Pestka S, Krause C D, Walter M R. Interferons, interferon-like cytokines, and their receptors.  Immunol Rev. 2004;  202 8-32
  • 11 Pestka S, Langer J A, Zoon K C, Samuel C E. Interferons and their actions.  Annu Rev Biochem. 1987;  56 727-777
  • 12 Roberts R M, Ezashi T, Rosenfeld C S, Ealy A D, Kubisch H M. Evolution of the interferon tau genes and their promoters, and maternal-trophoblast interactions in control of their expression.  Reprod Suppl. 2003;  61 239-251
  • 13 Roberts R M, Ealy A D, Alexenko A P, Han C S, Ezashi T. Trophoblast interferons.  Placenta. 1999;  20 259-264
  • 14 Krause C D, Pestka S. Evolution of the class 2 cytokines and receptors, and discovery of new friends and relatives.  Pharmacol Ther. 2005;  106 299-346
  • 15 Kim S, Choi Y, Bazer F W, Spencer T E. Identification of genes in the ovine endometrium regulated by interferon tau independent of signal transducer and activator of transcription 1.  Endocrinology. 2003;  144 5203-5214
  • 16 Gray C A, Abbey C A, Beremand P D et al.. Identification of endometrial genes regulated by early pregnancy, progesterone, and interferon tau in the ovine uterus.  Biol Reprod. 2005;  74(2) 383-394
  • 17 Stewart M D, Johnson G A, Bazer F W, Spencer T E. Interferon-tau (IFNtau) regulation of IFN-stimulated gene expression in cell lines lacking specific IFN-signaling components.  Endocrinology. 2001;  142 1786-1794
  • 18 Der S D, Zhou A, Williams B R, Silverman R H. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays.  Proc Natl Acad Sci U S A. 1998;  95 15623-15628
  • 19 Darnell Jr J E, Kerr I M, Stark G R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins.  Science. 1994;  264 1415-1421
  • 20 Stark G R, Kerr I M, Williams B R, Silverman R H, Schreiber R D. How cells respond to interferons.  Annu Rev Biochem. 1998;  67 227-264
  • 21 Mamane Y, Heylbroeck C, Genin P et al.. Interferon regulatory factors: the next generation.  Gene. 1999;  237 1-14
  • 22 Taniguchi T, Takaoka A. The interferon-[alpha]/[beta] system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors.  Curr Opin Immunol. 2002;  14 111-116
  • 23 Stewart M D, Choi Y, Johnson G A, Yu-Lee L Y, Bazer F W, Spencer T E. Roles of Stat1, Stat2, and interferon regulatory factor-9 (IRF-9) in interferon tau regulation of IRF-1.  Biol Reprod. 2002;  66 393-400
  • 24 Leanza E C, Hoshida M S, Costa A F, Fernandes C M, de Fatima Pereira Teixeira C, Bevilacqua E. Signaling molecules involved in IFN-γ-inducible nitric oxide synthase expression in the mouse trophoblast.  Am J Reprod Immunol. 2007;  58(6) 537-546
  • 25 Chard T. Interferon in pregnancy.  J Dev Physiol. 1989;  11 271-276
  • 26 Aboagye-Mathiesen G, Toth F D, Hager H et al.. Human trophoblast interferons.  Antiviral Res. 1993;  22 91-105
  • 27 Bowen J, Chamley L, Mitchell M, Keelen J. Cytokines of the placenta and extra-placental membranes: biosynthesis, secretion and roles in establishment of pregnancy in women.  Placenta. 2002;  23 239-256
  • 28 Bazer F W, Johnson H M. Type I conceptus interferons: maternal recognition of pregnancy signals and potential therapeutic agents.  Am J Reprod Immunol. 1991;  26 19-22
  • 29 Guillomot M. Cellular interactions during implantation in domestic ruminants.  J Reprod Fertil Suppl. 1995;  49 39-51
  • 30 Spencer T E, Bazer F W. Biology of progesterone action during pregnancy recognition and maintenance of pregnancy.  Front Biosci. 2002;  7 d1879-d1898
  • 31 Spencer T E, Sandra O, Wolf E. Genes involved in conceptus-endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches.  Reproduction. 2008;  135(2) 165-179
  • 32 Hayashi K, Burghardt R C, Bazer F W, Spencer T E. WNTs in the ovine uterus: potential regulation of periimplantation ovine conceptus development.  Endocrinology. 2007;  148 3496-3506
  • 33 Gray C A, Adelson D L, Bazer F W, Burghardt R C, Meeusen E N, Spencer T E. Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm.  Proc Natl Acad Sci U S A. 2004;  101 7982-7987
  • 34 Song G, Spencer T E, Bazer F W. Cathepsins in the ovine uterus: regulation by pregnancy, progesterone, and interferon tau.  Endocrinology. 2005;  146 4825-4833
  • 35 Song G, Spencer T E, Bazer F W. Progesterone and interferon-tau regulate cystatin C in the endometrium.  Endocrinology. 2006;  147 3478-3483
  • 36 Song G, Kim J, Bazer F W, Spencer T E. Progesterone and interferon tau regulate hypoxia-inducible factors (HIFs) in the endometrium of the ovine uterus.  Endocrinology. 2008;  149 1926-1934
  • 37 Hsu D K, Liu F T. Regulation of cellular homeostasis by galectins.  Glycoconj J. 2004;  19 507-515
  • 38 Hughes R C. Galectins as modulators of cell adhesion.  Biochimie. 2001;  83 667-676
  • 39 Yang R Y, Liu F T. Galectins in cell growth and apoptosis.  Cell Mol Life Sci. 2003;  60 267-276
  • 40 Guillomot M, Flechon J E, Leroy F. Blastocyst development and implantation. In: Thibault C, Levasseur MC, Hunter RHF Reproduction in Mammals and Man. Paris, France; Ellipses 1993: 387-411
  • 41 Farmer J L, Burghardt R C, Jousan F D, Hansen P J, Bazer F W, Spencer T E. Galectin 15 (LGALS15) functions in trophectoderm migration and attachment.  FASEB J. 2008;  22(2) 548-560
  • 42 Salamonsen L A. Role of proteases in implantation.  Rev Reprod. 1999;  4 11-22
  • 43 Afonso S, Romagnano L, Babiarz B. The expression and function of cystatin C and cathepsin B and cathepsin L during mouse embryo implantation and placentation.  Development. 1997;  124 3415-3425
  • 44 Salamonsen L A, Nagase H, Woolley D E. Matrix metalloproteinases and their tissue inhibitors at the ovine trophoblast-uterine interface.  J Reprod Fertil. 1995;  49 29-37
  • 45 Riley J K, Moley K H. Glucose utilization and the PI3-K pathway: mechanisms for cell survival in preimplantation embryos.  Reproduction. 2006;  131 823-835
  • 46 Zhao F Q, Zheng Y C, Wall E H, McFadden T B. Cloning and expression of bovine sodium/glucose cotransporters.  J Dairy Sci. 2005;  88 182-194
  • 47 Das U G, Sadiq H F, Soares M J, Hay Jr W W, Devaskar S U. Time-dependent physiological regulation of rodent and ovine placental glucose transporter (GLUT-1) protein.  Am J Physiol. 1998;  274 R339-R347
  • 48 Hoshide R, Ikeda Y, Karashima S et al.. Molecular cloning, tissue distribution, and chromosomal localization of human cationic amino acid transporter 2 (HCAT2).  Genomics. 1996;  38 174-178
  • 49 Polakis P. Wnt signaling and cancer.  Genes Dev. 2000;  14 1837-1851
  • 50 Mohamed O A, Dufort D, Clarke H J. Expression and estradiol regulation of WNT genes in the mouse blastocyst identify a candidate pathway for embryo-maternal signaling at implantation.  Biol Reprod. 2004;  71 417-424
  • 51 Mohamed O A, Jonnaert M, Labelle-Dumais C, Kuroda K, Clarke H J, Dufort D. Uterine Wnt/beta-catenin signaling is required for implantation.  Proc Natl Acad Sci U S A. 2005;  102(24) 8397-8398
  • 52 Dey S K, Lim H, Das S K et al.. Molecular cues to implantation.  Endocr Rev. 2004;  25 341-373
  • 53 Hou X, Tan Y, Li M, Dey S K, Das S K. Canonical WNT signaling is critical to estrogen-mediated uterine growth.  Mol Endocrinol. 2004;  18 3035-3049
  • 54 Tulac S, Nayak N R, Kao L C et al.. Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium.  J Clin Endocrinol Metab. 2003;  88 3860-3866
  • 55 Kao L C, Tulac S, Lobo S et al.. Global gene profiling in human endometrium during the window of implantation.  Endocrinology. 2002;  143 2119-2138
  • 56 Semenza G L. Hypoxia-inducible factor 1: master regulator of O2 homeostasis.  Curr Opin Genet Dev. 1998;  8 588-594
  • 57 Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development.  Proc Natl Acad Sci U S A. 1997;  94 4273-4278
  • 58 Iyer N V, Leung S W, Semenza G L. The human hypoxia-inducible factor 1alpha gene: HIF1A structure and evolutionary conservation.  Genomics. 1998;  52 159-165
  • 59 Semenza G L. HIF-1: mediator of physiological and pathophysiological responses to hypoxia.  J Appl Physiol. 2000;  88 1474-1480
  • 60 Ryan H E, Lo J, Johnson R S. HIF-1 alpha is required for solid tumor formation and embryonic vascularization.  EMBO J. 1998;  17 3005-3015
  • 61 Maltepe E, Schmidt J V, Baunoch D, Bradfield C A, Simon M C. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT.  Nature. 1997;  386 403-407
  • 62 Adelman D M, Gertsenstein M, Nagy A, Simon M C, Maltepe E. Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses.  Genes Dev. 2000;  14 3191-3203
  • 63 Kozak K R, Abbott B, Hankinson O. ARNT-deficient mice and placental differentiation.  Dev Biol. 1997;  191 297-305
  • 64 Peng J, Zhang L, Drysdale L, Fong G H. The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling.  Proc Natl Acad Sci U S A. 2000;  97 8386-8391
  • 65 Daikoku T, Matsumoto H, Gupta R A et al.. Expression of hypoxia-inducible factors in the peri-implantation mouse uterus is regulated in a cell-specific and ovarian steroid hormone-dependent manner. Evidence for differential function of HIFs during early pregnancy.  J Biol Chem. 2003;  278 7683-7691
  • 66 Asselin E, Johnson G A, Spencer T E, Bazer F W. Expression of monocyte chemotactic protein-1 and -2 in the ovine uterus: regulation by pregnancy, progesterone and interferon-τ.  Biol Reprod. 2001;  64 992-1000
  • 67 Wooding F B. Current topic: the synepitheliochorial placenta of ruminants: binucleate cell fusions and hormone production.  Placenta. 1992;  13 101-113
  • 68 Costain D J, Guha A K, Liwski R S, Lee T D. Murine hypodense eosinophils induce tumour cell apoptosis by a granzyme B-dependent mechanism.  Cancer Immunol Immunother. 2001;  50 293-299
  • 69 Spencer T E, Johnson G A, Burghardt R C, Bazer F W. Progesterone and placental hormone actions on the uterus: insights from domestic animals.  Biol Reprod. 2004;  71 2-10
  • 70 Chen Y, Green J A, Antoniou E et al.. Effect of interferon-tau administration on endometrium of non-pregnant ewes: a comparison with pregnant ewes.  Endocrinology. 2006;  147 2127-2137
  • 71 Choi Y, Johnson G A, Spencer T E, Bazer F W. Pregnancy and interferon tau regulate MHC class I and beta-2-microglobulin expression in the ovine uterus.  Biol Reprod. 2003;  68 1703-1710
  • 72 Popovici R M, Betzler N K, Krause M S et al.. Gene expression profiling of human endometrial-trophoblast interaction in a coculture model.  Endocrinology. 2006;  147 5662-5675
  • 73 Hess A P, Hamilton A E, Talbi S et al.. Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators.  Biol Reprod. 2007;  76 102-117
  • 74 Li Q, Zhang M, Kumar S et al.. Identification and implantation stage specific expression of an interferon-alpha-regulated gene in human and rat endometrium.  Endocrinology. 2001;  142 2390-2400
  • 75 Kumar S, Li Q, Dua A, Ying Y K, Bagchi M K, Bagchi I C. Messenger ribonucleic acid encoding interferon-inducible guanylate binding protein 1 is induced in human endometrium within the putative window of implantation.  J Clin Endocrinol Metab. 2001;  86 2420-2427
  • 76 Horcajadas J A, Riesewijk A, Dominguez F, Cervero A, Pellicer A, Simon C. Determinants of endometrial receptivity.  Ann N Y Acad Sci. 2004;  1034 166-175
  • 77 Bebington C, Bell S C, Doherty F J, Fazleabas A T, Fleming S D. Localization of ubiquitin and ubiquitin cross-reactive protein in human and baboon endometrium and decidua during the menstrual cycle and early pregnancy.  Biol Reprod. 1999;  60 920-928
  • 78 Carson D D, Lagow E, Thathiah A et al.. Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening.  Mol Hum Reprod. 2002;  8 871-879
  • 79 Austin K J, Bany B M, Belden E L, Rempel L A, Cross J C, Hansen T R. Interferon-stimulated gene-15 (Isg15) expression is up-regulated in the mouse uterus in response to the implanting conceptus.  Endocrinology. 2003;  144 3107-3113
  • 80 Bany B M, Cross J C. Post-implantation mouse conceptuses produce paracrine signals that regulate the uterine endometrium undergoing decidualization.  Dev Biol. 2006;  294 445-456
  • 81 Kashiwagi A, Digirolamo C M, Kanda Y et al.. The postimplantation embryo differentially regulates endometrial gene expression and decidualization.  Endocrinology. 2007;  148 4173-4184
  • 82 Cheon Y P, Xu X, Bagchi M K, Bagchi I C. Immune-responsive gene 1 is a novel target of progesterone receptor and plays a critical role during implantation in the mouse.  Endocrinology. 2003;  144 5623-5630
  • 83 Lobo S C, Huang S T, Germeyer A et al.. The immune environment in human endometrium during the window of implantation.  Am J Reprod Immunol. 2004;  52 244-251
  • 84 Borthwick J M, Charnock-Jones D S, Tom B D et al.. Determination of the transcript profile of human endometrium.  Mol Hum Reprod. 2003;  9 19-33
  • 85 Mirkin S, Arslan M, Churikov D et al.. In search of candidate genes critically expressed in the human endometrium during the window of implantation.  Hum Reprod. 2005;  20 2104-2117
  • 86 Reese J, Das S K, Paria B C et al.. Global gene expression analysis to identify molecular markers of uterine receptivity and embryo implantation.  J Biol Chem. 2001;  276 44137-44145
  • 87 Donaghay M, Lessey B A. Uterine receptivity: alterations associated with benign gynecological disease.  Semin Reprod Med. 2007;  25 461-475
  • 88 Aboagye-Mathiesen G, Toth F D, Zdravkovic M, Ebbesen P. Production of interferons in human placental trophoblast subpopulations and their possible roles in pregnancy.  Clin Diagn Lab Immunol. 1994;  1 650-659
  • 89 Aboagye-Mathiesen G, Toth F D, Zdravkovic M, Ebbesen P. Human trophoblast interferons: production and possible roles in early pregnancy.  Early Pregnancy. 1995;  1 41-53
  • 90 Aboagye-Mathiesen G, Toth F D, Zdravkovic M, Ebbesen P. Functional characteristics of human trophoblast interferons.  Am J Reprod Immunol. 1996;  35 309-317
  • 91 Erkanli S, Kayaselcuk F, Kuscu E et al.. Expression of survivin, PTEN and p27 in normal, hyperplastic, and carcinomatous endometrium.  Int J Gynecol Cancer. 2006;  16 1412-1418
  • 92 Mitchell S N, Smith S K. The effect of progesterone and human interferon α-2 on the release of PGF and PGE from epithelial cells of human proliferative endometrium.  Prostaglandins. 1992;  44 457-470
  • 93 Howatson A G, Farquharson M, Meager A, McNicol A M, Foulis A K. Localization of α-interferon in the human feto-placental unit.  J Endocrinol. 1988;  119 531-534
  • 94 Iles R K, Chard T. Enhancement of ectopic beta-human chorionic gonadotrophin expression by interferon-alpha.  J Endocrinol. 1989;  123(3) 501-507
  • 95 Peyman J A, Hammond G L. Localization of interferon-γ receptor in first trimester placenta to trophoblasts but lack of stimulation of HLA-DRA, -DRB, or invariant chain mRNA expression by interferon-γ.  J Immunol. 1992;  149 2675-2680
  • 96 Lee-Huang S, Huang P L, Sun Y et al.. Lysozyme and RNases as anti-HIV components in β-core preparations of human chorionic gonadotropin.  Proc Natl Acad Sci U S A. 1999;  96 2678-2681
  • 97 Bazer F W, Johnson G A, Spencer T E. Growth and development: pre-implantation embryo. In: Pond WG, Bell AW Encyclopedia of Animal Science. New York, NY; Marcel Dekker 2005: 1-3
  • 98 Cencič A, Guillomot M, Koren S, LaBonnarière C. Trophoblastic interferons: do they modulate uterine cellular markers at the time of conceptus attachment in the pig?.  Placenta. 2003;  24(3) 862-869
  • 99 Cencič A, LaBonnardiėre C. Trophoblastic interferon-gamma: current knowledge and possible role(s) in early pig pregnancy.  Vet Res. 2002;  33 139-157
  • 100 Frank M, Bazer F W, Thatcher W W, Wilcox C J. A study of prostaglandin F2alpha as the luteolysin in swine: III. Effects of estradiol valerate on prostaglandin F, progestins, estrone and estradiol concentrations in the utero-ovarian vein of nonpregnant gilts.  Prostaglandins. 1977;  14 1183-1196
  • 101 Geisert R D, Thatcher W W, Roberts R M, Bazer F W. Establishment of pregnancy in the pig: III. Endometrial secretory response to estradiol valerate administered on day 11 of the estrous cycle.  Biol Reprod. 1982;  27 957-965
  • 102 Garlow J E, Ka H, Johnson G A, Burghardt R C, Jaeger L A, Bazer F W. Analysis of osteopontin at the maternal-placental interface in pigs.  Biol Reprod. 2002;  66 718-725
  • 103 White F J, Ross J W, Joyce M M, Geisert R D, Burghardt R C, Johnson G A. Steroid regulation of cell specific secreted phosphoprotein 1 (osteopontin) expression in the pregnant porcine uterus.  Biol Reprod. 2005;  73 1294-1301
  • 104 Ka H, Jaeger L A, Johnson G A, Spencer T E, Bazer F W. Keratinocyte growth factor expression is up-regulated by estrogen in porcine uterine endometrium and it functions in trophectodermal cell proliferation and differentiation.  Endocrinology. 2001;  142 2303-2310
  • 105 Ka H, Spencer T E, Johnson G A, Bazer F W. Keratinocyte growth factor: expression by endometrial epithelia in the porcine uterus.  Biol Reprod. 2000;  62 1772-1778
  • 106 Ka H, Al-Ramadan S, Johnson G A et al.. Regulation of fibroblast growth factor 7 expression in the pig uterine endometrium by progesterone and estradiol.  Biol Reprod. 2007;  77 172-180
  • 107 Ross J W, Malayer J R, Ritchey J W, Geisert R D. Characterization of the interleukin-1beta system during porcine trophoblastic elongation and early placental attachment.  Biol Reprod. 2003;  69 1251-1259
  • 108 Harney J P, Bazer F W. Effect of porcine conceptus secretory proteins on interoestrous interval and uterine secretion of prostaglandins.  Biol Reprod. 1989;  41 277-284
  • 109 Joyce M M, Burghardt J R, Burghardt R C et al.. Pig conceptuses increase uterine interferon regulatory factor-1 (IRF-1), but restrict expression to stroma through estrogen-induced IRF-2 in luminal epithelium.  Biol Reprod. 2007;  77 292-302
  • 110 Hicks B A, Etter S J, Carnahan K G et al.. Expression of the uterine Mx protein in cyclic and pregnant cows, gilts, and mares.  J Anim Sci. 2003;  81 1552-1561
  • 111 Ross J W, Ashworth M D, White F J et al.. Premature estrogen exposure alters endometrial gene expression to disrupt pregnancy in the pig.  Endocrinology. 2007;  148 4761-4773
  • 112 Young H A, Hardy K J. Role of interferon-gamma in immune cell regulation.  J Leukoc Biol. 1995;  58 373-381
  • 113 Ashkar A A, Di Santo J P, Croy B A. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy.  J Exp Med. 2000;  192 259-270
  • 114 Levy D E, Lew D J, Decker T, Kessler D S, Darnell J EJ. Synergistic interaction between interferon-alpha and interferon-gamma through induced synthesis of one subunit of the transcription factor ISGF3.  EMBO J. 1990;  9 1105-1111
  • 115 Decker T, Lew D J, Cheng Y S, Levy D E, Darnell J EJ. Interactions of alpha- and gamma-interferon in the transcriptional regulation of the gene encoding a guanylate-binding protein.  EMBO J. 1989;  8 2009-2014
  • 116 Wessels J M, Linton N F, Croy B A, Tayade C. A review of molecular contrasts between arresting and viable porcine attachment sites.  Am J Reprod Immunol. 2007;  58 470-480
  • 117 Platt J S, Hunt J. Isolation of IFN-gamma protein and messenger RNA in cycling and pregnant mouse uteri.  J Reprod Immunol. 1997;  34 61-62
  • 118 Monk J M, Leonard S, McBey B A, Croy B A. Induction of murine spiral artery modification by recombinant humane interferon-gamma.  Placenta. 2005;  26 835-838
  • 119 Ashkar A A, Croy B A. Interferon-γ contributes to the normalcy of murine pregnancy.  Biol Reprod. 1999;  61 493-502
  • 120 Kirn-Safran C B, D'Souza S S, Carson D D. Heparan sulfate proteoglycans and their binding proteins in embryo implantation and placentation.  Semin Cell Dev Biol. 2008;  19 187-193
  • 121 Lortat-Jacob H, Grimaud J A. Interferon-gamma c-terminal function: new working hypothesis. Heparin sulfate and heparin, new targets for IFN-gamma, protect, relax the cytokine and regulate its activity.  Cell Mol Biol. 1991;  37(3) 253-260
  • 122 Lash G E, Otun H A, Innes B A et al.. Interferon-γ inhibits extravillous trophoblast cell invasion by a mechanism that involves both changes in apoptosis and protease levels.  FASEB J. 2006;  20 2512-2518

Fuller W BazerPh.D. 

2471 TAMU, Texas A&M University

College Station, TX 77843-2471

Email: fbazer@cvm.tamu.edu

    >