Der Nuklearmediziner 2009; 32(2): 178-184
DOI: 10.1055/s-0028-1105916
Nicht-FDG-PET

© Georg Thieme Verlag KG Stuttgart · New York

Molekulare Kardiale PET jenseits der FDG-Vitalitätsdiagnostik

Molecular Cardiac PET besides FDG Viability ImagingO. Lindner 1 , W. Burchert 1
  • 1Institut für Radiologie, Nuklearmedizin und Molekulare Bildgebung, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum
Further Information

Publication History

Publication Date:
22 June 2009 (online)

Zusammenfassung

Die molekulare kardiale PET jenseits der F-18-FDG Vitalitätsdiagnostik beruht derzeit im Wesentlichen auf der Perfusions-PET. Sie weist bei der KHK-Diagnostik eine hohe Genauigkeit auf und ist der Perfusions-SPECT überlegen. Die prognostische Bedeutung der Perfusions-PET ist ebenfalls belegt. Die Möglichkeit, mit der PET absolute Perfusionsmessungen in kurzer Zeit durchzuführen, begründet ihre Bedeutung für die kardiologische Diagnostik. Dies trifft besonders auf die Früh- und Spätformen der KHK zu. Von Nachteil ist, dass die in Europa gängigen PET-Perfusionstracer zyklotronabhängig sind. Mit Rb-82, einem Generatorprodukt, das in den USA bereits etabliert ist, bahnt sich auch für den europäischen Raum eine zyklotronunabhängige Alternative an. Kardiale PET bedeutet auch kardiale PET-CT. In der Onkologie hat die Hybridbildgebung gezeigt, dass die Kombination von funktioneller und morphologischer Bildinformation den einzelnen Komponenten überlegen ist. Für die Kardiologie liegt mit der Integration von Perfusion und CT-Angiografie oder CT-Calcium-Score eine vergleichbare Konstellation vor. Die Aussicht, mit der Hydridtechnik in naher Zukunft den oder die vulnerablen Plaques nichtinvasiv darzustellen und zu lokalisieren, dürfte von immenser Bedeutung für Prophylaxe, Diagnostik und Therapie der KHK werden.

Abstract

Molecular cardiac non F-18-FDG PET is currently based on perfusion imaging. It is of excellent diagnostic accuracy to detect coronary artery disease (CAD) and superior to perfusion SPECT. There is also evidence for its incremental prognostic value. The unique feature of PET to measure myocardial perfusion in absolute terms and in short time periods define its impact on cardiac imaging enabling both the evaluation of early changes in CAD and the accurate characterization of multivessel disease. Currently, all available PET perfusion tracers in Europe are cyclotron products. Rb-82, a generator product, is the most frequently employed perfusion tracer in the United States and cyclotrone independent. This tracer has the potential to become an alternative in Europe soon. Nowadays, PET systems are manufactured as hybrid PET-CT scanners. In oncology, hybrid imaging revealed, that the combination of functional and morphological imaging is superior to the single components. In cardiology, the integration of perfusion PET imaging with CT calcium scoring and CT anatomy of the coronary arteries represents a similar constellation. Atherosclerotic plaque evaluation by combined PET-CT technique will be one of the most promising future applications with a potential immense impact on prophylaxis, diagnosis and therapy of CAD in the future.

Literatur

  • 1 Baller D, Notohamiprodjo G, Gleichmann U. et al . Improvement in coronary flow reserve determined by positron emission tomography after 6 months of cholesterol-lowering therapy in patients with early stages of coronary atherosclerosis.  Circulation. 1999;  99 2871-2875
  • 2 Bateman TM, Heller GV, McGhie AI. et al . Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT.  J Nucl Cardiol. 2006;  13 24-33
  • 3 Beanlands RS, Bach DS, Raylman R. et al . Acute effects of dobutamine on myocardial oxygen consumption and cardiac efficiency measured using carbon-11 acetate kinetics in patients with dilated cardiomyopathy.  J Am Coll Cardiol. 1993;  22 1389-1398
  • 4 Bengel FM, Schwaiger M. Assessment of cardiac sympathetic neuronal function using PET imaging.  J Nucl Cardiol. 2004;  11 603-616
  • 5 Bergmann SR, Hack S, Tewson T. et al . The dependence of accumulation of 13NH3 by myocardium on metabolic factors and its implications for quantitative assessment of perfusion.  Circulation. 1980;  61 34-43
  • 6 Berman DS, Hachamovitch R, Shaw LJ. et al .Nuclear Cardiology. In: Furster V, O’Rourke RA, Walsh RA, Poole-Wilson P, eds. Hurst's The Heart. 2007: 544-576
  • 7 Carli MF Di. Assessment of Myocardial Viability with Positron Emisson Tomography. In: Zaret BL, Beller GA, eds. Clinical Nuclear Cardiology. 2005: 519-534
  • 8 Carli MF Di, Hachamovitch R. Hybrid PET/CT is greater than the sum of its parts.  J Nucl Cardiol. 2008;  15 118-122
  • 9 Falk E, Shah PK, Fuster V. Coronary plaque disruption.  Circulation. 1995;  92 657-671
  • 10 Groves AM, Speechly-Dick ME, Dickson JC. et al . Cardiac 82Rubidium PET/CT: initial European experience.  Eur J Nucl Med Mol Imaging. 2007;  34 1965-1972
  • 11 Hachamovitch R, Hayes SW, Friedman JD. et al . Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography.  Circulation. 2003;  107 2900-2907
  • 12 Hacker M, Jakobs T, Matthiesen F. et al . Comparison of spiral multidetector CT angiography and myocardial perfusion imaging in the noninvasive detection of functionally relevant coronary artery lesions: first clinical experiences.  J Nucl Med. 2005;  46 1294-1300
  • 13 Klein LJ, Visser FC, Knaapen P. et al . Carbon-11 acetate as a tracer of myocardial oxygen consumption.  Eur J Nucl Med. 2001;  28 651-668
  • 14 Le Guludec D, Lautamaki R, Knuuti J. et al . Present and future of clinical cardiovascular PET imaging in Europe-a position statement by the European Council of Nuclear Cardiology (ECNC).  Eur J Nucl Med Mol Imaging. 2008;  35 1709-1724
  • 15 Lindner O, Sorensen J, Vogt J. et al . Cardiac efficiency and oxygen consumption measured with 11C-acetate PET after long-term cardiac resynchronization therapy.  J Nucl Med. 2006;  47 378-383
  • 16 Machac J. Cardiac positron emission tomography imaging.  Semin Nucl Med. 2005;  35 17-36
  • 17 Marwick TH, Shan K, Patel S. et al . Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease.  Am J Cardiol. 1997;  80 865-870
  • 18 Patterson RE, Cloninger K, Churchwell KB. Special problems with cardiovascular imaging in women. In: Julian DG, Wenger NK, eds. Women and Heart Disease. London: Martin Dunitz Ltd 1997: 91
  • 19 Pietila M, Malminiemi K, Ukkonen H. et al . Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure.  Eur J Nucl Med. 2001;  28 373-376
  • 20 Sampson UK, Dorbala S, Limaye A. et al . Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease.  J Am Coll Cardiol. 2007;  49 1052-1058
  • 21 Schelbert HR, Phelps ME, Huang SC. et al . N-13 ammonia as an indicator of myocardial blood flow.  Circulation. 1981;  63 1259-1272
  • 22 Schenker MP, Dorbala S, Hong EC. et al . Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study.  Circulation. 2008;  117 1693-1700
  • 23 Schuijf JD, Jukema JW, Wall EE van der. et al . The current status of multislice computed tomography in the diagnosis and prognosis of coronary artery disease.  J Nucl Cardiol. 2007;  14 604-612
  • 24 Selwyn AP, Allan RM, L’Abbate A. et al . Relation between regional myocardial uptake of rubidium-82 and perfusion: absolute reduction of cation uptake in ischemia.  Am J Cardiol. 1982;  50 112-121
  • 25 Sorensen J, Stahle E, Langstrom B. et al . Simple and accurate assessment of forward cardiac output by use of 1-(11)C-acetate PET verified in a pig model.  J Nucl Med. 2003;  44 1176-1183
  • 26 Tahara N, Kai H, Ishibashi M. et al . Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography.  J Am Coll Cardiol. 2006;  48 1825-1831
  • 27 Hoff J van den, Burchert W, Borner AR. et al . [1-(11)C]Acetate as a quantitative perfusion tracer in myocardial PET.  J Nucl Med. 2001;  42 1174-1182
  • 28 Yoshinaga K, Chow BJ, Williams K. et al . What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography?.  J Am Coll Cardiol. 2006;  48 1029-1039

Korrespondenzadresse

PD Dr. O. Lindner

Institut für Radiologie, Nuklearmedizin und Molekulare Bildgebung

Herz- und Diabeteszentrum NRW

Universitätsklinik der Ruhr-Universität Bochum

Georgstr. 11

32545 Bad Oeynhausen

Phone: 0/57/31/97 35 02

Fax: 0/57/31/97 21 90

Email: olindner@hdz-nrw.de