Semin Thromb Hemost 2008; 34(6): 562-568
DOI: 10.1055/s-0028-1103367
© Thieme Medical Publishers

Genetic Architecture of Tissue-Type Plasminogen Activator and Plasminogen Activator Inhibitor-1

Folkert W. Asselbergs1 , 2 , Kristine Pattin3 , Harold Snieder2 , Hans L. Hillege1 , Wiek H. van Gilst1 , 4 , Jason H. Moore3
  • 1Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
  • 2Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
  • 3Departments of Genetics and Community and Family Medicine, Dartmouth Medical School, Lebanon, New Hampshire
  • 4Department of Clinical Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
Further Information

Publication History

Publication Date:
28 November 2008 (online)

ABSTRACT

Important biochemical constituents of the fibrinolytic system include tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1). In the current review, we aim to describe the genetic architecture of t-PA and PAI-1. Several genetic polymorphisms in the t-PA and PAI-1 gene have been found to be associated with t-PA and PAI-1 levels in different patient cohorts. However, these genetic variations explain only a minor part of the heritability of t-PA and PAI-1, suggesting that genes in other pathways may influence t-PA and PAI-1 levels, and that epistasis and gene-environment interactions may play an important role in determining plasma levels of t-PA and PAI-1. Several studies reported that interindividual variation in plasma levels of t-PA and PAI-1 are significantly influenced by common polymorphisms in genes from the renin-angiotensin and bradykinin systems. In addition, we and others documented several gene-environment interactions and epistatic effects of genetic polymorphisms in the renin-angiotensin, bradykinin, and fibrinolytic systems on plasma t-PA and PAI-1 levels. In future studies, we need to consider high-order interactions and additional polymorphisms in genes from other (unknown) pathways detected by genome-wide association studies to fully understand the complex genetic architecture of these important intermediate quantitative traits and thereby thrombosis.

REFERENCES

  • 1 Thogersen A M, Jansson J H, Boman K et al.. High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor.  Circulation. 1998;  98 2241-2247
  • 2 Hamsten A, Wiman B, de Faire U et al.. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction.  N Engl J Med. 1985;  313 1557-1563
  • 3 Hamsten A, de Faire U, Walldius G et al.. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction.  Lancet. 1987;  2 3-9
  • 4 Collet J P, Montalescot G, Vicaut E et al.. Acute release of plasminogen activator inhibitor-1 in ST-segment elevation myocardial infarction predicts mortality.  Circulation. 2003;  108 391-394
  • 5 Sprengers E D, Kluft C. Plasminogen activator inhibitors.  Blood. 1987;  69 381-387
  • 6 Pradhan A D, LaCroix A Z, Langer R D et al.. Tissue plasminogen activator antigen and D-dimer as markers for atherothrombotic risk among healthy postmenopausal women.  Circulation. 2004;  110 292-300
  • 7 Ridker P M, Vaughan D E, Stampfer M J et al.. Endogenous tissue-type plasminogen activator and risk of myocardial infarction.  Lancet. 1993;  341 1165-1168
  • 8 Ridker P M, Hennekens C H, Stampfer M J et al.. Prospective study of endogenous tissue plasminogen activator and risk of stroke.  Lancet. 1994;  343 940-943
  • 9 de Bono D. Significance of raised plasma concentrations of tissue-type plasminogen activator and plasminogen activator inhibitor in patients at risk from ischaemic heart disease.  Br Heart J. 1994;  71 504-507
  • 10 Renckens R, Roelofs J J, Florquin S et al.. Endogenous tissue-type plasminogen activator is protective during Escherichia coli-induced abdominal sepsis in mice.  J Immunol. 2006;  177 1189-1196
  • 11 Medcalf R L. Fibrinolysis, inflammation, and regulation of the plasminogen activating system.  J Thromb Haemost. 2007;  5(Suppl 1) 132-142
  • 12 Brown N J, Gainer J V, Stein C M et al.. Bradykinin stimulates tissue plasminogen activator release in human vasculature.  Hypertension. 1999;  33 1431-1435
  • 13 Chomiki N, Henry M, Alessi M C et al.. Plasminogen activator inhibitor-1 expression in human liver and healthy or atherosclerotic vessel walls.  Thromb Haemost. 1994;  72 44-53
  • 14 Samad F, Loskutoff D J. Tissue distribution and regulation of plasminogen activator inhibitor-1 in obese mice.  Mol Med. 1996;  2 568-582
  • 15 Brogren H, Karlsson L, Andersson M et al.. Platelets synthesize large amounts of active plasminogen activator inhibitor 1.  Blood. 2004;  104 3943-3948
  • 16 Sawdey M, Podor T J, Loskutoff D J. Regulation of type 1 plasminogen activator inhibitor gene expression in cultured bovine aortic endothelial cells. Induction by transforming growth factor-beta, lipopolysaccharide, and tumor necrosis factor-alpha.  J Biol Chem. 1989;  264 10396-10401
  • 17 Kooistra T, Bosma P J, Tons H A et al.. Plasminogen activator inhibitor 1: biosynthesis and mRNA level are increased by insulin in cultured human hepatocytes.  Thromb Haemost. 1989;  62 723-728
  • 18 Brown N J, Abbas A, Byrne D et al.. Comparative effects of estrogen and angiotensin-converting enzyme inhibition on plasminogen activator inhibitor-1 in healthy postmenopausal women.  Circulation. 2002;  105 304-309
  • 19 Vaughan D E, Lazos S A, Tong K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis.  J Clin Invest. 1995;  95 995-1001
  • 20 Cesari M, Sartori M T, Patrassi G M et al.. Determinants of plasma levels of plasminogen activator inhibitor-1: A study of normotensive twins.  Arterioscler Thromb Vasc Biol. 1999;  19 316-320
  • 21 de Lange M, Snieder H, Ariens R A et al.. The genetics of haemostasis: a twin study.  Lancet. 2001;  357 101-105
  • 22 de Lange M, de Geus E J, Kluft C et al.. Genetic influences on fibrinogen, tissue plasminogen activator-antigen and von Willebrand factor in males and females.  Thromb Haemost. 2006;  95 414-419
  • 23 Hong Y, Pedersen N L, Egberg N et al.. Moderate genetic influences on plasma levels of plasminogen activator inhibitor-1 and evidence of genetic and environmental influences shared by plasminogen activator inhibitor-1, triglycerides, and body mass index.  Arterioscler Thromb Vasc Biol. 1997;  17 2776-2782
  • 24 Peetz D, Victor A, Adams P et al.. Genetic and environmental influences on the fibrinolytic system: a twin study.  Thromb Haemost. 2004;  92 344-351
  • 25 van der Bom J G, de Knijff P, Haverkate F et al.. Tissue plasminogen activator and risk of myocardial infarction. The Rotterdam Study.  Circulation. 1997;  95 2623-2627
  • 26 Ludwig M, Wohn K D, Schleuning W D et al.. Allelic dimorphism in the human tissue-type plasminogen activator (TPA) gene as a result of an Alu insertion/deletion event.  Hum Genet. 1992;  88 388-392
  • 27 Ridker P M, Baker M T, Hennekens C H et al.. Alu-repeat polymorphism in the gene coding for tissue-type plasminogen activator (t-PA) and risks of myocardial infarction among middle-aged men.  Arterioscler Thromb Vasc Biol. 1997;  17 1687-1690
  • 28 Ladenvall P, Wall U, Jern S et al.. Identification of eight novel single-nucleotide polymorphisms at human tissue-type plasminogen activator (t-PA) locus: association with vascular t-PA release in vivo.  Thromb Haemost. 2000;  84 150-155
  • 29 Ladenvall P, Nilsson S, Jood K et al.. Genetic variation at the human tissue-type plasminogen activator (tPA) locus: haplotypes and analysis of association to plasma levels of tPA.  Eur J Hum Genet. 2003;  11 603-610
  • 30 Ladenvall P, Wall U, Jern S et al.. Eight single-nucleotide polymorphisms (SNPs) at the human tissue-type plasminogen activator (t-PA) locus.  J Hum Genet. 2001;  46 737-738
  • 31 Verschuur M, Jellema A, Bladbjerg E M et al.. The plasminogen activator inhibitor-1 (PAI-1) promoter haplotype is related to PAI-1 plasma concentrations in lean individuals.  Atherosclerosis. 2005;  181 275-284
  • 32 Asselbergs F W, Williams S M, Hebert P R et al.. The gender-specific role of polymorphisms from the fibrinolytic, renin-angiotensin, and bradykinin systems in determining plasma t-PA and PAI-1 levels.  Thromb Haemost. 2006;  96 471-477
  • 33 van der Bom J G, Bots M L, Haverkate F et al.. The 4G5G polymorphism in the gene for PAI-1 and the circadian oscillation of plasma PAI-1.  Blood. 2003;  101 1841-1844
  • 34 Margaglione M, Grandone E, Vecchione G et al.. Plasminogen activator inhibitor-1 (PAI-1) antigen plasma levels in subjects attending a metabolic ward: relation to polymorphisms of PAI-1 and angiontensin converting enzyme (ACE) genes.  Arterioscler Thromb Vasc Biol. 1997;  17 2082-2087
  • 35 Tsantes A E, Nikolopoulos G K, Bagos P G et al.. Association between the plasminogen activator inhibitor-1 4G/5G polymorphism and venous thrombosis. A meta-analysis.  Thromb Haemost. 2007;  97 907-913
  • 36 Attia J, Thakkinstian A, Wang Y et al.. The PAI-1 4G/5G gene polymorphism and ischemic stroke: an association study and meta-analysis.  J Stroke Cerebrovasc Dis. 2007;  16 173-179
  • 37 Boekholdt S M, Bijsterveld N R, Moons A H et al.. Genetic variation in coagulation and fibrinolytic proteins and their relation with acute myocardial infarction: a systematic review.  Circulation. 2001;  104 3063-3068
  • 38 Henry M, Tregouet D A, Alessi M C et al.. Metabolic determinants are much more important than genetic polymorphisms in determining the PAI-1 activity and antigen plasma concentrations: a family study with part of the Stanislas Cohort.  Arterioscler Thromb Vasc Biol. 1998;  18 84-91
  • 39 Vaughan D E, Rouleau J L, Ridker P M et al.. Effects of ramipril on plasma fibrinolytic balance in patients with acute anterior myocardial infarction. HEART Study Investigators.  Circulation. 1997;  96 442-447
  • 40 Brown N J, Agirbasli M, Vaughan D E. Comparative effect of angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor antagonism on plasma fibrinolytic balance in humans.  Hypertension. 1999;  34 285-290
  • 41 Ridker P M, Gaboury C L, Conlin P R et al.. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Evidence of a potential interaction between the renin-angiotensin system and fibrinolytic function.  Circulation. 1993;  87 1969-1973
  • 42 Pretorius M, Rosenbaum D, Vaughan D E et al.. Angiotensin-converting enzyme inhibition increases human vascular tissue-type plasminogen activator release through endogenous bradykinin.  Circulation. 2003;  107 579-585
  • 43 Oikawa T, Freeman M, Lo W et al.. Modulation of plasminogen activator inhibitor-1 in vivo: a new mechanism for the anti-fibrotic effect of renin-angiotensin inhibition.  Kidney Int. 1997;  51 164-172
  • 44 Moore J H, Lamb J M, Brown N J et al.. A comparison of combinatorial partitioning and linear regression for the detection of epistatic effects of the ACE I/D and PAI-1 4G/5G polymorphisms on plasma PAI-1 levels.  Clin Genet. 2002;  62 74-79
  • 45 Moore J H, Smolkin M E, Lamb J M et al.. The relationship between plasma t-PA and PAI-1 levels is dependent on epistatic effects of the ACE I/D and PAI-1 4G/5G polymorphisms.  Clin Genet. 2002;  62 53-59
  • 46 Kim D K, Kim J W, Kim S et al.. Polymorphism of angiotensin converting enzyme gene is associated with circulating levels of plasminogen activator inhibitor-1.  Arterioscler Thromb Vasc Biol. 1997;  17 3242-3247
  • 47 Jeng J R, Harn H J, Yueh K C et al.. Plasminogen activator inhibitor-1 and angiotensin I converting enzyme gene polymorphism in patients with hypertension.  Am J Hypertens. 1998;  11 235-239
  • 48 Pankow J S, Arnett D K, Borecki I B et al.. Lack of association between the angiotensin-converting enzyme insertion/deletion polymorphism and plasminogen activator inhibitor-1 antigen levels in the National Heart, Lung, and Blood Institute Family Heart Study.  Blood Coagul Fibrinolysis. 2000;  11 551-558
  • 49 Tsujino T, Naito Y, Kawasaki D et al.. Circadian expression of plasminogen activator inhibitor-1 in angiotensin II type 1a receptor knockout mice.  Clin Exp Hypertens. 2005;  27 159-168
  • 50 Nakamura S, Nakamura I, Ma L et al.. Plasminogen activator inhibitor-1 expression is regulated by the angiotensin type 1 receptor in vivo.  Kidney Int. 2000;  58 251-259
  • 51 Brown N J, Gainer J V, Murphey L J et al.. Bradykinin stimulates tissue plasminogen activator release from human forearm vasculature through B(2) receptor-dependent, NO synthase-independent, and cyclooxygenase-independent pathway.  Circulation. 2000;  102 2190-2196
  • 52 AbdAlla S, Lother H, el Massiery A, Quitterer U. Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness.  Nat Med. 2001;  7 1003-1009
  • 53 AbdAlla S, Lother H, Quitterer U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration.  Nature. 2000;  407 94-98
  • 54 Bateson W. Mendel's Principles of Heredity. Cambridge, UK; Cambridge University Press 1909
  • 55 Fisher R A. The correlations between relatives on the supposition of Mendelian inheritance.  Trans R Soc Edinb. 1918;  52 399-433
  • 56 Phillips P C. The language of gene interaction.  Genetics. 1998;  149 1167-1171
  • 57 Moore J H, Williams S M. Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis.  Bioessays. 2005;  27 637-646
  • 58 Moore J H. The ubiquitous nature of epistasis in determining susceptibility to common human diseases.  Hum Hered. 2003;  56 73-82
  • 59 Asselbergs F W, Williams S M, Hebert P R et al.. Epistatic effects of polymorphisms in genes from the renin-angiotensin, bradykinin, and fibrinolytic systems on plasma t-PA and PAI-1 levels.  Genomics. 2007;  89 362-369
  • 60 Asselbergs F W, Williams S M, Hebert P R et al.. The effects of polymorphisms in genes from the renin-angiotensin, bradykinin, and fibrinolytic systems on plasma t-PA and PAI-1 levels are dependent on environmental context.  Hum Genet. 2007;  122 275-281
  • 61 Perez-Martinez P, Adarraga-Cansino M D, Fernandez de la Puebla R A et al.. The -675 4G/5G polymorphism at the plasminogen activator inhibitor 1 (PAI-1) gene modulates plasma plasminogen activator inhibitor 1 concentrations in response to dietary fat consumption.  Br J Nutr. 2008;  99 699-702
  • 62 Mukamal K J, Jadhav P P, D'Agostino R B et al.. Alcohol consumption and hemostatic factors: analysis of the Framingham Offspring cohort.  Circulation. 2001;  104 1367-1373
  • 63 Taivainen H, Laitinen K, Tahtela R et al.. Role of plasma vasopressin in changes of water balance accompanying acute alcohol intoxication.  Alcohol Clin Exp Res. 1995;  19 759-762
  • 64 Thevananther S, Brecher A S. Interaction of acetaldehyde with plasma proteins of the renin-angiotensin system.  Alcohol. 1994;  11 493-499
  • 65 Skurk T, Hauner H. Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1.  Int J Obes Relat Metab Disord. 2004;  28 1357-1364
  • 66 Sartori M T, Vettor R, De Pergola G et al.. Role of the 4G/5G polymorphism of PaI-1 gene promoter on PaI-1 levels in obese patients: influence of fat distribution and insulin-resistance.  Thromb Haemost. 2001;  86 1161-1169

Dr. Folkert W Asselbergs

Department of Cardiology, University Medical Center Groningen, University of Groningen

P.O. Box 30001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands

Email: fwasselbergs@hotmail.com