Semin Liver Dis 2008; 28(4): 370-379
DOI: 10.1055/s-0028-1091981
© Thieme Medical Publishers

Mechanisms of Disease Progression in Nonalcoholic Fatty Liver Disease

Janice Jou1 , Steve S. Choi1 , 2 , Anna Mae Diehl1
  • 1Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
  • 2Section of Gastroenterology, Department of Medicine, Durham Veteran Affairs Medical Center, Durham, North Carolina
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
27. Oktober 2008 (online)

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of hepatic pathology, ranging from simple steatosis (also called nonalcoholic fatty liver or NAFL) in its most benign form, to cirrhosis in its most advanced form. Nonalcoholic steatohepatitis (NASH) is an intermediate level of hepatic pathology. Hepatocyte accumulation of triglyceride is a hallmark of NAFL and NASH, but this sometimes subsides once cirrhosis has developed. Triglyceride storage per se is not hepatotoxic. Rather, it is a marker of increased exposure of hepatocytes to potentially toxic fatty acids. NAFL progresses to NASH when adaptive mechanisms that protect hepatocytes from fatty acid-mediated lipotoxicity become overwhelmed and rates of hepatocyte death begin to outstrip mechanisms that normally regenerate dead hepatocytes. This triggers repair responses that involve activation of hepatic stellate cells to myofibroblasts. The myofibroblasts generate excessive matrix and produce factors that stimulate expansion of liver progenitor populations. The progenitor cells produce chemokines to attract various kinds of inflammatory cells to the liver. They also differentiate to replace the dead hepatocytes. The intensity of these repair responses generally parallel the degree of hepatocyte death, resulting in variable distortion of the hepatic architecture with fibrosis, infiltrating immune cells, and regenerating epithelial nodules. As in other types of chronic liver injury, cirrhosis ensues in patients with NAFLD when repair is extreme and sustained, but ultimately unsuccessful, at reconstituting healthy hepatic epithelia.

REFERENCES

  • 1 Clark J M, Brancati F L, Diehl A M. Nonalcoholic fatty liver disease.  Gastroenterology. 2002;  122(6) 1649-1657
  • 2 Ludwig J, Viggiano T R, McGill D B, Oh B J. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease.  Mayo Clin Proc. 1980;  55(7) 434-438
  • 3 Day C P, James O F. Steatohepatitis: a tale of two hits?.  Gastroenterology. 1998;  114(4) 842-845
  • 4 Duvnjak M, Lerotic I, Barsic N et al.. Pathogenesis and management issues for non-alcoholic fatty liver disease.  World J Gastroenterol. 2007;  13(34) 4539-4550
  • 5 Diraison F, Moulin P, Beylot M. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease.  Diabetes Metab. 2003;  29(5) 478-485
  • 6 Charlton M, Sreekumar R, Rasmussen D et al.. Apolipoprotein synthesis in nonalcoholic steatohepatitis.  Hepatology. 2002;  35(4) 898-904
  • 7 Miele L, Grieco A, Armuzzi A et al.. Hepatic mitochondrial beta-oxidation in patients with nonalcoholic steatohepatitis assessed by 13C-octanoate breath test.  Am J Gastroenterol. 2003;  98(10) 2335-2336
  • 8 Cases S, Smith S J, Zheng Y W et al.. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis.  Proc Natl Acad Sci U S A. 1998;  95(22) 13018-13023
  • 9 Cases S, Stone S J, Zhou P et al.. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members.  J Biol Chem. 2001;  276(42) 38870-38876
  • 10 Chen H C. Enhancing energy and glucose metabolism by disrupting triglyceride synthesis: lessons from mice lacking DGAT1.  Nutr Metab (Lond). 2006;  3(1) 10
  • 11 Smith S J, Cases S, Jensen D R et al.. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT.  Nat Genet. 2000;  25(1) 87-90
  • 12 Chen H C, Smith S J, Ladha Z et al.. Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1.  J Clin Invest. 2002;  109(8) 1049-1055
  • 13 Stone S J, Myers H M, Watkins S M et al.. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice.  J Biol Chem. 2004;  279(12) 11767-11776
  • 14 Diehl A M, Clarke J, Brancati F. Insulin resistance syndrome and nonalcoholic fatty liver disease.  Endocr Pract. 2003;  9(suppl 2) 93-96
  • 15 Monetti M, Levin M C, Watt M J et al.. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver.  Cell Metab. 2007;  6(1) 69-78
  • 16 Yu X X, Murray S F, Pandey S K et al.. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice.  Hepatology. 2005;  42(2) 362-371
  • 17 Choi C S, Savage D B, Kulkarni A et al.. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance.  J Biol Chem. 2007;  282(31) 22678-22688
  • 18 Yamaguchi K, Yang L, McCall S et al.. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis.  Hepatology. 2007;  45(6) 1366-1374
  • 19 Unger R H, Orci L. Lipoapoptosis: its mechanism and its diseases.  Biochim Biophys Acta. 2002;  1585(2–3) 202-212
  • 20 Feldstein A E, Werneburg N W, Canbay A et al.. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway.  Hepatology. 2004;  40(1) 185-194
  • 21 Ruan H, Lodish H F. Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha.  Cytokine Growth Factor Rev. 2003;  14(5) 447-455
  • 22 Hotamisligil G S, Budavari A, Murray D, Spiegelman B M. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes: central role of tumor necrosis factor-alpha.  J Clin Invest. 1994;  94(4) 1543-1549
  • 23 Uysal K T, Wiesbrock S M, Hotamisligil G S. Functional analysis of tumor necrosis factor (TNF) receptors in TNF-alpha-mediated insulin resistance in genetic obesity.  Endocrinology. 1998;  139(12) 4832-4838
  • 24 Uysal K T, Wiesbrock S M, Marino M W, Hotamisligil G S. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function.  Nature. 1997;  389(6651) 610-614
  • 25 Bocher V, Pineda-Torra I, Fruchart J C, Staels B. PPARs: transcription factors controlling lipid and lipoprotein metabolism.  Ann N Y Acad Sci. 2002;  967 7-18
  • 26 Maeda N, Takahashi M, Funahashi T et al.. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein.  Diabetes. 2001;  50(9) 2094-2099
  • 27 Li Z, Berk M, McIntyre T M, Gores G J, Feldstein A E. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity.  Hepatology. 2008;  47 1495-1503
  • 28 Schattenberg J M, Wang Y, Singh R, Rigoli R M, Czaja M J. Hepatocyte CYP2E1 overexpression and steatohepatitis lead to impaired hepatic insulin signaling.  J Biol Chem. 2005;  280(11) 9887-9894
  • 29 Sanyal A J, Campbell-Sargent C, Mirshahi F et al.. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities.  Gastroenterology. 2001;  120(5) 1183-1192
  • 30 Diehl A M. Nonalcoholic fatty liver disease: implications for alcoholic liver disease pathogenesis.  Alcohol Clin Exp Res. 2001;  25(suppl) 8S-14S
  • 31 Klaus S. Adipose tissue as a regulator of energy balance.  Curr Drug Targets. 2004;  5(3) 241-250
  • 32 Tilg H, Hotamisligil G S. Nonalcoholic fatty liver disease: cytokine-adipokine interplay and regulation of insulin resistance.  Gastroenterology. 2006;  131(3) 934-945
  • 33 Caspar-Bauguil S, Cousin B, Galinier A et al.. Adipose tissues as an ancestral immune organ: site-specific change in obesity.  FEBS Lett. 2005;  579(17) 3487-3492
  • 34 Powell E E, Searle J, Mortimer R. Steatohepatitis associated with limb lipodystrophy.  Gastroenterology. 1989;  97(4) 1022-1024
  • 35 Marchesini G, Bugianesi E, Forlani G et al.. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome.  Hepatology. 2003;  37(4) 917-923
  • 36 Adachi M, Osawa Y, Uchinami H et al.. The forkhead transcription factor FoxO1 regulates proliferation and transdifferentiation of hepatic stellate cells.  Gastroenterology. 2007;  132(4) 1434-1446
  • 37 Kaser S, Moschen A, Cayon A et al.. Adiponectin and its receptors in non-alcoholic steatohepatitis.  Gut. 2005;  54(1) 117-121
  • 38 Korner A, Wabitsch M, Seidel B et al.. Adiponectin expression in humans is dependent on differentiation of adipocytes and down-regulated by humoral serum components of high molecular weight.  Biochem Biophys Res Commun. 2005;  337(2) 540-550
  • 39 Arner P. The adipocyte in insulin resistance: key molecules and the impact of the thiazolidinediones.  Trends Endocrinol Metab. 2003;  14(3) 137-145
  • 40 Xu H, Barnes G T, Yang Q et al.. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance.  J Clin Invest. 2003;  112(12) 1821-1830
  • 41 Bouloumie A, Curat C A, Sengenes C et al.. Role of macrophage tissue infiltration in metabolic diseases.  Curr Opin Clin Nutr Metab Care. 2005;  8(4) 347-354
  • 42 Friedman S L. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury.  J Biol Chem. 2000;  275(4) 2247-2250
  • 43 Maeda N, Shimomura I, Kishida K et al.. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30.  Nat Med. 2002;  8(7) 731-737
  • 44 De Taeye B M, Novitskaya T, McGuinness O P et al.. Macrophage TNF-alpha contributes to insulin resistance and hepatic steatosis in diet-induced obesity.  Am J Physiol Endocrinol Metab. 2007;  293(3) E713-E725
  • 45 Kershaw E E, Flier J S. Adipose tissue as an endocrine organ.  J Clin Endocrinol Metab. 2004;  89(6) 2548-2556
  • 46 Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling.  Cell Death Differ. 2003;  10(1) 45-65
  • 47 Diehl A M. Tumor necrosis factor and its potential role in insulin resistance and nonalcoholic fatty liver disease.  Clin Liver Dis. 2004;  8(3) 619-638
  • 48 Pauli U. Control of tumor necrosis factor gene expression.  Crit Rev Eukaryot Gene Expr. 1994;  4(2–3) 323-344
  • 49 Cai D, Yuan M, Frantz D F et al.. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB.  Nat Med. 2005;  11(2) 183-190
  • 50 Kugelmas M, Hill D B, Vivian B, Marsano L, McClain C J. Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E.  Hepatology. 2003;  38(2) 413-419
  • 51 Hui J M, Hodge A, Farrell G C et al.. Beyond insulin resistance in NASH: TNF-alpha or adiponectin?.  Hepatology. 2004;  40(1) 46-54
  • 52 Tafani M, Schneider T G, Pastorino J G, Farber J L. Cytochrome C-dependent activation of caspase-3 by tumor necrosis factor requires induction of the mitochondrial permeability transition.  Am J Pathol. 2000;  156(6) 2111-2121
  • 53 Feldstein A E, Canbay A, Angulo P et al.. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis.  Gastroenterology. 2003;  125(2) 437-443
  • 54 Wieckowska A, Zein N N, Yerian L M et al.. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease.  Hepatology. 2006;  44(1) 27-33
  • 55 Xu A, Wang Y, Keshaw H et al.. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice.  J Clin Invest. 2003;  112(1) 91-100
  • 56 Spranger J, Kroke A, Mohlig M et al.. Adiponectin and protection against type 2 diabetes mellitus.  Lancet. 2003;  361(9353) 226-228
  • 57 Kamada Y, Tamura S, Kiso S et al.. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin.  Gastroenterology. 2003;  125(6) 1796-1807
  • 58 Kamada Y, Matsumoto H, Tamura S et al.. Hypoadiponectinemia accelerates hepatic tumor formation in a nonalcoholic steatohepatitis mouse model.  J Hepatol. 2007;  47(4) 556-564
  • 59 Masaki T, Chiba S, Tatsukawa H et al.. Adiponectin protects LPS-induced liver injury through modulation of TNF-alpha in KK-Ay obese mice.  Hepatology. 2004;  40(1) 177-184
  • 60 Clark J M. The epidemiology of nonalcoholic fatty liver disease in adults.  J Clin Gastroenterol. 2006;  40(suppl 1) S5-S10
  • 61 Roskams T, Yang S Q, Koteish A et al.. Oxidative stress and oval cell accumulation in mice and humans with alcoholic and nonalcoholic fatty liver disease.  Am J Pathol. 2003;  163(4) 1301-1311
  • 62 Bataller R, Brenner D A. Liver fibrosis.  J Clin Invest. 2005;  115(2) 209-218
  • 63 Zhan S S, Jiang J X, Wu J et al.. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo.  Hepatology. 2006;  43(3) 435-443
  • 64 Bataller R, Brenner D A. Hepatic stellate cells as a target for the treatment of liver fibrosis.  Semin Liver Dis. 2001;  21(3) 437-451
  • 65 Bataller R, Brenner D A. Liver fibrosis.  J Clin Invest. 2005;  115(2) 209-218
  • 66 Yang L, Wang Y, Mao H et al.. Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells.  J Hepatol. 2008;  48(1) 98-106
  • 67 Feldstein A E, Papouchado B G, Angulo P et al.. Hepatic stellate cells and fibrosis progression in patients with nonalcoholic fatty liver disease.  Clin Gastroenterol Hepatol. 2005;  3(4) 384-389
  • 68 Lee J Y, Chae D W, Kim S M et al.. Expression of FasL and perforin/granzyme B mRNA in chronic hepatitis B virus infection.  J Viral Hepat. 2004;  11(2) 130-135
  • 69 Li Z, Soloski M J, Diehl A M. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease.  Hepatology. 2005;  42(4) 880-885
  • 70 de Lalla C, Galli G, Aldrighetti L et al.. Production of profibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis.  J Immunol. 2004;  173(2) 1417-1425
  • 71 Befeler A S, Di Bisceglie A M. Hepatocellular carcinoma: diagnosis and treatment.  Gastroenterology. 2002;  122(6) 1609-1619
  • 72 Ratziu V, Bonyhay L, Di Martino V et al.. Survival, liver failure, and hepatocellular carcinoma in obesity-related cryptogenic cirrhosis.  Hepatology. 2002;  35(6) 1485-1493
  • 73 Maheshwari A, Thuluvath P J. Cryptogenic cirrhosis and NAFLD: are they related?.  Am J Gastroenterol. 2006;  101(3) 664-668
  • 74 Hashizume H, Sato K, Takagi H et al.. Primary liver cancers with nonalcoholic steatohepatitis.  Eur J Gastroenterol Hepatol. 2007;  19(10) 827-834
  • 75 Orikasa H, Ohyama R, Tsuka N, Eyden B P, Yamazaki K. Lipid-rich clear-cell hepatocellular carcinoma arising in non-alcoholic steatohepatitis in a patient with diabetes mellitus.  J Submicrosc Cytol Pathol. 2001;  33(1–2) 195-200
  • 76 Xu Z, Chen L, Leung L et al.. Liver-specific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and hepatic neoplasia.  Proc Natl Acad Sci U S A. 2005;  102(11) 4120-4125
  • 77 Soga M, Kishimoto Y, Kawamura Y et al.. Spontaneous development of hepatocellular carcinomas in the FLS mice with hereditary fatty liver.  Cancer Lett. 2003;  196(1) 43-48
  • 78 Fleig S V, Choi S S, Yang L et al.. Hepatic accumulation of Hedgehog-reactive progenitors increases with severity of fatty liver damage in mice.  Lab Invest. 2007;  87(12) 1227-1239

Anna Mae DiehlM.D. 

Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Genome Sciences Research Building-1

595 LaSalle Street, Suite 1073, DUMC 3256, Durham, NC 27710

eMail: annamae.diehl@duke.edu