Synlett 2009(6): 968-972  
DOI: 10.1055/s-0028-1088217
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Diastereoselective Domino Heck-Suzuki Reaction: Synthesis of Substituted Methylenetetrahydrofurans

Manfred Braun*, Brigitte Richrath
Institut für Organische Chemie und Makromolekulare Chemie, Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
Fax: +49(211)8115079; e-Mail: braunm@uni-duesseldorf.de;
Further Information

Publication History

Received 25 November 2008
Publication Date:
16 March 2009 (online)

Abstract

In a palladium-catalyzed reaction of dienyl ethers with boronic acids, a diastereoselective cyclization occurs to give methylenetetrahydrofurans. They can be obtained as pure enantiomers and their conversion into dihydro-3(2H)-furanones and dioxanones is demonstrated.

    References and Notes

  • 1a Tietze L.-F. Brasche G. Gericke KM. Domino Reactions in Organic Synthesis   Wiley-VCH; Weinheim: 2006. 
  • 1b Tietze LF. Chem. Rev.  1996,  96:  115 
  • For a review, see:
  • 2a Negishi E.-I. Copéret C. Ma S. Liou S.-Y. Liu F. Chem. Rev.  1996,  96:  365 
  • For early examples, see:
  • 2b Narula CK. Mak KT. Heck RF. J. Org. Chem.  1983,  48:  2792 
  • 2c Shi L. Narula CK. Mak KT. Kao L. Xu Y. Heck RF. J. Org. Chem.  1983,  48:  3894 
  • 2d Grigg R. Stevenson P. Worakun T. J. Chem. Soc., Chem. Commun.  1984,  1073 
  • 2e Grigg R. Stevenson R. Worakun T. Tetrahedron  1988,  44:  2033 
  • 2f Negishi E. Tour JM. J. Am. Chem. Soc.  1985,  107:  8289 
  • Trapping by reduction:
  • 3a Trost BM. Fleitz FJ. Watkins WJ. J. Am. Chem. Soc.  1996,  118:  5146 
  • 3b Ojima I. Donovan RJ. Shay WR. J. Am. Chem. Soc.  1992,  114:  6580 
  • 3c Oh CH. Rhim CY. Kang JH. Kim A. Park BS. Seo Y. Tetrahedron Lett.  1996,  37:  8875 
  • 3d Kulagowski JJ. Curtis NR. Swain CJ. Williams BJ. Org. Lett.  2001,  3:  667 
  • Trapping by Stille coupling:
  • 4a Yamada H. Aoyagi S. Kibayashi C. Tetrahedron Lett.  1997,  38:  3027 
  • 4b Negishi E. Noda Y. Lamaty F. Vawter EJ. Tetrahedron Lett.  1990,  31:  4393 
  • 4c Luo F.-T. Wang R.-T. Tetrahedron Lett.  1991,  32:  7703 
  • 4d Salem B. Delort E. Klotz P. Suffert J. Org. Lett.  2003,  5:  2307 
  • Trapping by Sonogashira coupling:
  • 5a D’Souza DM. Rominger F. Müller TJJ. Angew. Chem. Int. Ed.  2005,  44:  153 ; Angew. Chem. 2005, 117, 156
  • 5b Teplý F. Stará IG. Starý I. Kollárovič A. Š aman D. Fiedler P. Tetrahedron  2002,  58:  9007 
  • Trapping with organozinc reagents:
  • 6a Burns B. Grigg R. Sridharan V. Stevenson P. Sukirthalingam S. Worakun T. Tetrahedron Lett.  1989,  30:  1135 
  • 6b Luo F.-T. Wang R.-T. Heterocycles  1990,  31:  2181 
  • 6c Wang R.-T. Chou F.-L. Luo F.-T. J. Org. Chem.  1990,  55:  4846 
  • 7 For a related nickel-catalyzed cyclization-carbonylation, see: Delgado A. Llebaria A. Camps F. Moreto JM. Tetrahedron Lett.  1994,  35:  4011 
  • 8a Oh CH. Sung HR. Park SJ. Ahn KH. J. Org. Chem.  2002,  67:  7155 
  • 8b Couty S. Liegault B. Meyer C. Cossy J. Org. Lett.  2004,  6:  2511 
  • 8c Couty S. Meyer C. Cossy J. Tetrahedron Lett.  2006,  47:  767 
  • 8d Yanada R. Obika S. Inokuma T. Yanada K. Yamashita M. Ohta S. Takemoto Y. J. Org. Chem.  2005,  70:  6972 
  • 8e Cheung WS. Patch RJ. Player MR. J. Org. Chem.  2005,  70:  3741 
  • 8f Yu H. Richey RN. Carson MW. Coghlan MJ. Org. Lett.  2006,  8:  1685 
  • 8g Arthuis M. Pontikis R. Florent J.-C. Tetrahedron Lett.  2007,  48:  6397 
  • 8h Marchal E. Cupif J.-F. Uriac P. van de Weghe P. Tetrahedron Lett.  2008,  49:  3713 
  • 8i Guo L.-N. Duan X.-H. Hu J. Bi H.-P. Liu X.-Y. Liang Y.-M. Eur. J. Org. Chem.  2008,  1418 
  • For overviews on the synthesis of tetrahydrofurans, see:
  • 9a Kröper H. In Houben Weyl   4th ed., Vol. 3:  Müller E. Thieme; Stuttgart: 1965.  p.517 
  • 9b Eberbach W. In Houben-Weyl   Vol. E6a:  Kreher RP. Thieme; Stuttgart: 1994.  p.16 
  • For different approaches to racemic 2,3-disubstituted-4-methylenetetrahydrofurans, see:
  • 9c Jana S. Guin C. Roy SC. Tetrahedron Lett.  2005,  46:  1155 
  • 9d Ranu BC. Mandal T. Tetrahedron Lett.  2006,  79:  2859 
  • 9e Tang F. Chen C. Moeller KD. Synthesis  2007,  3411 
  • 10 Herrmann WA. Broßmer C. Öfele K. Reisinger C.-P. Priermeier T. Beller M. Fischer H. Angew. Chem., Int. Ed. Engl.  1995,  34:  1844 ; Angew. Chem. 1995, 107, 1989
  • 11a Frauenrath H. Philipps T. Liebigs Ann. Chem.  1985,  1951 
  • 11b Hartung J. Kneuer R. Eur. J. Org. Chem.  2000,  1677 
  • 12 The latter reaction predominates, when (8S,9E,11S)-10-bromo-8-methyl-11-phenyl-2,5,7,12-tetraoxopentadeca-9,14-diene is submitted to the protocol: Hohmann A. Dissertation   University of Düsseldorf; Germany: 2006. 
  • 13 Confer: Trost BM. Yang H. Probst GD. J. Am. Chem. Soc.  2004,  126:  48 
  • 14a Corey EJ. Cheng XM. The Logic of Chemical Synthesis   Wiley; New York: 1989. 
  • 14b Modern Aldol Reactions   Mahrwald R. Wiley-VCH; Weinheim: 2004. 
  • 14c For a different approach to β-hydroxycarboxylic acids via diastereoselective conversions of dioxanones, see: Herradón B. Seebach D. Helv. Chim. Acta  1989,  72:  690 
15

Typical Procedure for the Preparation of Compound 1aa
To a stirred solution of 3a (0.253 g, 1.00 mmol) in EtOH (10 mL) under an argon atmosphere were added PhB(OH)2 (4a, 0.183 g, 1.50 mmol), Cs2CO3 (0.489 g, 1.5 mmol), Pd(OAc)2 (5.5 mg, 0.0025 mmol), and tri-o-tolylphosphane (5.1 mg, 0.0025 mmol). After stirring for 24 h at 25 ˚C, the solvent was removed in a rotary evaporator. The residue was dissolved in a mixture of Et2O (40 mL) and deionized H2O (40 mL). The aqueous layer was separated and extracted with three 20 mL portions of Et2O. The combined organic layers were dried with anhyd MgSO4, and the solvent was evaporated under reduced pressure. The yellow-brown crude product was purified by column chromatography on SiO2 (hexane-EtOAc, 6:1) to give yellowish, oily 1aa (0.153 g, 61%).

16

Spectroscopic Data Compound 1aa: ¹H NMR (500 MHz, CDCl3): δ = 2.38 (m, 2 H, CH2Ph), 2.93 (m, 1 H, 3-H), 4.41 (dq, J d = 13.16 Hz, J q = 2.13 Hz, 1 H, 5-H), 4.54 (dt, J d = 13.24 Hz, J t = 1.66 Hz, 1 H, 5-H), 4.61 (d, J = 6.31 Hz, 1 H, 2-H), 4.75 (q, J = 2.36 Hz, 1 H, C=CHH), 4.90 (q, J = 2.05 Hz, 1 H, C=CHH), 7.19 (m, 10 H, arom. H). This cis-diastereomer differs in δ = 4.63 (d, J = 1.90 Hz, 1 H, 2-H). ¹³C NMR (125 MHz, CDCl3): δ = 38.7, 53.0, 71.9, 86.4, 105.5, 115.7, 121.1, 126.6, 126.7, 128.0, 128.7, 129.6, 130.1, 139.7, 141.8, 151. 3. GC-MS (t R = 9.71 min): m/z (%) = 250 (2) [M]+, 158 (43), 129 (100).
Compound (2R,3R)-1aa: [α]D ²0 -3.1 (c 1, CHCl3).
Compound 1ab: ¹H NMR (500 MHz, CDCl3): δ = 2.80 (m, 2 H, CH2Ar), 2.89 (m, 1 H, 3-H), 4.40 (m, 1 H, 5-H), 4.53 (m, 1 H, 5-H), 4.57 (d, J = 6.31 Hz, 1 H, 2-H), 4.76 (q, J = 2.21 Hz, 1 H, C=CHH), 4.90 (q, J = 1.26 Hz, 1 H, C=CHH), 7.22 (m, 9 H, arom. H). This cis-diastereomer differs in δ = 4.61 (d, J = 1.58 Hz, 1 H, 2-H). ¹³C NMR (125 MHz, CDCl3): δ = 16.57, 32.94, 41.62, 71.83, 85.27, 105.52, 125.82, 126.77, 127.35, 128.73, 129.57, 130.08, 131.97, 130.06, 144.22, 152.99. GC-MS [t R = 12.06 min(trans); t R = 12.10 min(cis)]: m/z (%) = 296 (23) [M]+, 158 (50), 137 (100).
Compound 1ac: ¹H NMR (500 MHz, CDCl3): δ = 2.90 (m, 2 H, CH2Ar), 2.98 (m, 1 H, 3-H), 4.50 (m, 1 H, 5-H), 4.64 (m, 1 H, 5-H), 4.65 (d, J = 6.0 Hz, 1 H, 2-H), 4.84 (d, J = 1.89 Hz, 1 H, C=CHH), 5.01 (d, J = 1.58 Hz, 1 H, C=CHH), 7.09 (d, J = 8.20 Hz, 2 H, m-ArCl), 7.28 (m, 7 H, arom. H). ¹³C NMR (125 MHz, CDCl3): δ = 22.02, 27.96, 31.83, 35.68, 69.25, 86.53, 101.37, 124.51, 127.04, 129.65, 130.51, 141.74, 154.69. GC-MS (t R = 10.70 min): m/z (%) = 284 (5) [M]+, 158 (72), 143 (100).
Compound 1ad: ¹H NMR (500 MHz, CDCl3): δ = 0.81 (m, 3 H, CH3), 1.21 (m, 10 H, CH2), 1.87 (m, 1 H, CHCHH), 2.33 (m, CHCHH), 2.58 (m, 1 H, 3-H), 4.35 (dq, J d = 13.24 Hz, J q = 2.21 Hz, 1 H, 5-H), 4.54 (m, 1 H, 5-H), 4.92 (q, J = 2.05 Hz, 1 H, 2-H), 5.27 (m, 2 H, C=CHH, CH=CH), 5.41 (m, 2 H, C=CHH, CH=CH), 7.27 (d, J = 4.10 Hz, 2 H, o-arom. H), 7.38 (t, J = 7.72 Hz, 2 H, m-arom. H), 7.53 (dd, J = 1.10, 8.35 Hz, 1 H, p-arom. H). ¹³C NMR (125 MHz, CDCl3): δ = 15.0, 21.2, 24.4, 27.9, 31.5, 33.1, 34.7, 58.1, 70.5, 90.3, 109.6, 125.0, 126.1, 127.6, 129.2, 130.0, 136.5, 149.9. GC-MS (t R = 10.70 min): m/z (%) = 284 (32) [M]+, 269 (38), 172 (45), 158 (100).
Compound 1ae: ¹H NMR (500 MHz, CDCl3): δ = 1.25 (d, J = 6.31 Hz, 6 H, CH3), 1.29 (m, 2 H, CH 2Ph), 1.38 (m, 1 H, CHCH3), 2.94 (q, J = 7.25 Hz, 1 H, 3-H), 4.75 (m, 2 H, 5-H), 5.13 (d, J = 10.40 Hz, 1 H, 2-H), 5.27 (t, J = 1.42 Hz 1 H, C=CHH), 5.30 (t, J = 1.42 Hz, 1 H, C=CHH), 7.25 (m, 5 H, arom. H). ¹³C NMR (125 MHz, CDCl3): δ = 22.02, 27.96, 31.83, 35.68, 69.25, 86.53, 101.37, 124.51, 127.04, 129.65, 130.51, 141.74, 154.69. GC-MS (t R = 10.70 min): m/z (%) = 165 (10) [M - C4H3]+, 139 (12), 123 (85), 97 (100).
Compound 1ba: ¹H NMR (500 MHz, CDCl3): δ = 0.93 (d, J = 6.31 Hz, 3 H, CH3), 2.63 (m, 2 H, CH2Ph), 2.87 (m, 1 H, 3-H), 3.68 (quint, J = 6.46 Hz, 1 H, 2-H), 4.21 (dq, J d = 13.24 Hz, J q = 2.21 Hz, 1 H, 5-H), 4.35 (dt, J d = 13.24 Hz, J t = 1.42 Hz, 1 H, 5-H), 4.79 (q, J = 2.21 Hz, 1 H, C=CHH), 4.78 (q, J = 2.05 Hz, 1 H, C=CHH), 7.17 (m, 5 H, arom. H). ¹³C NMR (125 MHz, CDCl3): δ = 15.87 (cis), 20.30 (trans), 38.58, 51.75, 70.78, 81.29, 104.65, 115.70, 126.64, 128.81, 129.44, 130.05, 140.08, 152.57. GC-MS [t R = 10.70 min(trans), 6.71 min(cis)]: m/z (%) = 188 (5) [M]+, 143 (17), 129 (100), 97 (70).
Compound 1bb: ¹H NMR (500 MHz, CDCl3): δ = 0.96
(d, J = 6.31 Hz, 3 H, CH3), 2.41 (s, 3 H, SCH3), 2.58 (dd, J = 14.03, 8.04 Hz, 2 H, CH2Ar), 2.81 (dd, J = 14.19, 6.13 Hz, 1 H, 3-H), 3.66 (quint, J = 6.38 Hz, 1 H, 2-H), 4.19 (q, J = 2.21 Hz, 1 H, 5-H), 4.21 (q, J = 2.21 Hz, 1 H, 5-H), 4.78 (q, J = 2.36 Hz, 1 H, C=CHH), 4.87 (q, J = 2.21 Hz, 1 H, C=CHH), 7.13 (m, 4 H, arom. H.). ¹³C NMR (125 MHz, CDCl3): δ = 11.12, 21.17, 38.03, 44.76, 70.85, 79.92, 114.87, 127.57, 128.73, 130.37, 138.39, 149.53. GC-MS
[t R = 10.70 min, 9.09 min(trans), 9.30 min(cis)]: m/z (%) = 234 (12) [M]+, 137 (100), 122 (8).
Compound 1bc: ¹H NMR (500 MHz, CDCl3): δ = 0.96 (d, J = 6.31 Hz, 3 H, CH3), 2.41 (m, 1 H, CHHPh), 2.59 (m, 1 H, CHHPh), 2.81 (dd, J = 14.03, 6.46 Hz, 1 H, 3-H), 3.66 (quint, J = 6.31 Hz, 1 H, 2-H), 4.20 (dq, J d = 13.24 Hz, J q = 2.21 Hz, 1 H, 5-H), 4.34 (dt, J d = 13.03 Hz, J t = 1.85 Hz, 1 H, 5-H), 4.76 (q, J = 2.21 Hz, 1 H, C=CHH), 4.78 (q, J = 2.21 Hz, 1 H, C=CHH), 7.07 (m, 2 H, o-arom. H), 7.19 (m, 2 H, m-arom. H). ¹³C NMR (125 MHz, CDCl3): δ = 20.33, 37.92, 51.69, 70.81, 81.07, 104.89, 128.92, 130.77, 132.92, 138.55, 153.58. GC-MS [t R = 7.75 min(trans), 7.98 min(cis)]: m/z (%) = 222 (1) [M]+, 143 (70), 125 (100), 97 (75).
Compound 1ca: ¹H NMR (500 MHz, CDCl3): δ = 0.71 (d, J = 6.94 Hz, 3 H, CH3), 0.78 (d, J = 6.94 Hz, 3 H, CH3), 1.48 (m, 1 H, CHCH3), 2.71 (m, 2 H, CH2Ph), 3.39 (m, 1 H, 3-H), 3.42 (m, 1 H, 2-H), 4.26 (m, 2 H, 5-H), 4.67 (d, J = 2.21 Hz, 1 H, C=CHH), 4.83 (d, J = 1.58 Hz, 1 H, C=CHH), 7.23 (m, 5 H, arom. H). ¹³C NMR (125 MHz, CDCl3): δ = 17.93, 19.60, 31.63, 40.89, 48.30, 70.88, 89.81, 105.17, 126.57, 127.66, 128,68, 129.65, 140.31, 141.65, 152.27. GC-MS
[t R = 7.21 min(trans), 7.31 min(cis)]: m/z (%) = 216 (7) [M]+, 173 (15), 155 (45), 143 (45), 129 (85), 91 (100). Compound 2: ¹H NMR (500 MHz, CDCl3): δ = 2.73 (m, 1 H, 3-H), 2.92 (m, 2 H, CH2Ph), 3.84 (d, J = 17.34 Hz, 1 H, 5-H), 4.25 (d, J = 16.08 Hz, 1 H, 5-H), 4.73 (d, J = 9.48 Hz,
1 H, 2-H), 7.30 (m, 10 H, arom. H). ¹³C NMR (125 MHz, CDCl3): δ = 32.58, 56.36, 72.13, 84.00, 126.80, 127.07, 129.07, 129.76, 130.25, 131.88, 140.08, 142.04, 216.12. GC-MS (t R = 9.91 min): m/z (%) = 252 (1) [M]+, 193 (10), 161 (100).
Compound 9: ¹H NMR (500 MHz, CDCl3): δ = 2.68 (m, 2 H, CH2Ph), 3.28 (m, 1 H, 5-H), 4.55 (d, J = 10.09 Hz, 1 H, 6-H), 5.18 (d, J = 5.67 Hz, 1 H, 2-H), 5.35 (d, J = 5.67 Hz,
1 H, 2-H), 7.22 (m, 10 H, arom. H). ¹³C NMR (125 MHz, CDCl3): δ = 33.30, 49.61, 80.49, 93.20, 127.34, 127.81, 129.11, 129.41, 129.76, 129.99, 137.93, 137.97, 170.04. GC-MS (t R = 10.82 min): m/z (%) = 268 (13) [M]+, 238 (13), 193 (22) [M], 176 (72), 91 (100).