Subscribe to RSS
DOI: 10.1055/s-0028-1088217
Diastereoselective Domino Heck-Suzuki Reaction: Synthesis of Substituted Methylenetetrahydrofurans
Publication History
Publication Date:
16 March 2009 (online)
Abstract
In a palladium-catalyzed reaction of dienyl ethers with boronic acids, a diastereoselective cyclization occurs to give methylenetetrahydrofurans. They can be obtained as pure enantiomers and their conversion into dihydro-3(2H)-furanones and dioxanones is demonstrated.
Key words
palladium - catalysis - cyclizations - stereoselectivity - chirality
-
1a
Tietze L.-F.Brasche G.Gericke KM. Domino Reactions in Organic Synthesis Wiley-VCH; Weinheim: 2006. -
1b
Tietze LF. Chem. Rev. 1996, 96: 115 - For a review, see:
-
2a
Negishi E.-I.Copéret C.Ma S.Liou S.-Y.Liu F. Chem. Rev. 1996, 96: 365 - For early examples, see:
-
2b
Narula CK.Mak KT.Heck RF. J. Org. Chem. 1983, 48: 2792 -
2c
Shi L.Narula CK.Mak KT.Kao L.Xu Y.Heck RF. J. Org. Chem. 1983, 48: 3894 -
2d
Grigg R.Stevenson P.Worakun T. J. Chem. Soc., Chem. Commun. 1984, 1073 -
2e
Grigg R.Stevenson R.Worakun T. Tetrahedron 1988, 44: 2033 -
2f
Negishi E.Tour JM. J. Am. Chem. Soc. 1985, 107: 8289 - Trapping by reduction:
-
3a
Trost BM.Fleitz FJ.Watkins WJ. J. Am. Chem. Soc. 1996, 118: 5146 -
3b
Ojima I.Donovan RJ.Shay WR. J. Am. Chem. Soc. 1992, 114: 6580 -
3c
Oh CH.Rhim CY.Kang JH.Kim A.Park BS.Seo Y. Tetrahedron Lett. 1996, 37: 8875 -
3d
Kulagowski JJ.Curtis NR.Swain CJ.Williams BJ. Org. Lett. 2001, 3: 667 - Trapping by Stille coupling:
-
4a
Yamada H.Aoyagi S.Kibayashi C. Tetrahedron Lett. 1997, 38: 3027 -
4b
Negishi E.Noda Y.Lamaty F.Vawter EJ. Tetrahedron Lett. 1990, 31: 4393 -
4c
Luo F.-T.Wang R.-T. Tetrahedron Lett. 1991, 32: 7703 -
4d
Salem B.Delort E.Klotz P.Suffert J. Org. Lett. 2003, 5: 2307 - Trapping by Sonogashira coupling:
-
5a
D’Souza DM.Rominger F.Müller TJJ. Angew. Chem. Int. Ed. 2005, 44: 153 ; Angew. Chem. 2005, 117, 156 -
5b
Teplý F.Stará IG.Starý I.Kollárovič A. Šaman D.Fiedler P. Tetrahedron 2002, 58: 9007 - Trapping with organozinc reagents:
-
6a
Burns B.Grigg R.Sridharan V.Stevenson P.Sukirthalingam S.Worakun T. Tetrahedron Lett. 1989, 30: 1135 -
6b
Luo F.-T.Wang R.-T. Heterocycles 1990, 31: 2181 -
6c
Wang R.-T.Chou F.-L.Luo F.-T. J. Org. Chem. 1990, 55: 4846 - 7 For a related nickel-catalyzed cyclization-carbonylation, see:
Delgado A.Llebaria A.Camps F.Moreto JM. Tetrahedron Lett. 1994, 35: 4011 -
8a
Oh CH.Sung HR.Park SJ.Ahn KH. J. Org. Chem. 2002, 67: 7155 -
8b
Couty S.Liegault B.Meyer C.Cossy J. Org. Lett. 2004, 6: 2511 -
8c
Couty S.Meyer C.Cossy J. Tetrahedron Lett. 2006, 47: 767 -
8d
Yanada R.Obika S.Inokuma T.Yanada K.Yamashita M.Ohta S.Takemoto Y. J. Org. Chem. 2005, 70: 6972 -
8e
Cheung WS.Patch RJ.Player MR. J. Org. Chem. 2005, 70: 3741 -
8f
Yu H.Richey RN.Carson MW.Coghlan MJ. Org. Lett. 2006, 8: 1685 -
8g
Arthuis M.Pontikis R.Florent J.-C. Tetrahedron Lett. 2007, 48: 6397 -
8h
Marchal E.Cupif J.-F.Uriac P.van de Weghe P. Tetrahedron Lett. 2008, 49: 3713 -
8i
Guo L.-N.Duan X.-H.Hu J.Bi H.-P.Liu X.-Y.Liang Y.-M. Eur. J. Org. Chem. 2008, 1418 - For overviews on the synthesis of tetrahydrofurans, see:
-
9a
Kröper H. In Houben Weyl 4th ed., Vol. 3:Müller E. Thieme; Stuttgart: 1965. p.517 -
9b
Eberbach W. In Houben-Weyl Vol. E6a:Kreher RP. Thieme; Stuttgart: 1994. p.16 - For different approaches to racemic 2,3-disubstituted-4-methylenetetrahydrofurans, see:
-
9c
Jana S.Guin C.Roy SC. Tetrahedron Lett. 2005, 46: 1155 -
9d
Ranu BC.Mandal T. Tetrahedron Lett. 2006, 79: 2859 -
9e
Tang F.Chen C.Moeller KD. Synthesis 2007, 3411 - 10
Herrmann WA.Broßmer C.Öfele K.Reisinger C.-P.Priermeier T.Beller M.Fischer H. Angew. Chem., Int. Ed. Engl. 1995, 34: 1844 ; Angew. Chem. 1995, 107, 1989 -
11a
Frauenrath H.Philipps T. Liebigs Ann. Chem. 1985, 1951 -
11b
Hartung J.Kneuer R. Eur. J. Org. Chem. 2000, 1677 - 12 The latter reaction predominates,
when (8S,9E,11S)-10-bromo-8-methyl-11-phenyl-2,5,7,12-tetraoxopentadeca-9,14-diene
is submitted to the protocol:
Hohmann A. Dissertation University of Düsseldorf; Germany: 2006. - 13 Confer:
Trost BM.Yang H.Probst GD. J. Am. Chem. Soc. 2004, 126: 48 -
14a
Corey EJ.Cheng XM. The Logic of Chemical Synthesis Wiley; New York: 1989. -
14b
Modern
Aldol Reactions
Mahrwald R. Wiley-VCH; Weinheim: 2004. -
14c For a different approach
to β-hydroxycarboxylic acids via diastereoselective conversions
of dioxanones, see:
Herradón B.Seebach D. Helv. Chim. Acta 1989, 72: 690
References and Notes
Typical Procedure
for the Preparation of Compound 1aa
To a stirred solution
of 3a (0.253 g, 1.00 mmol) in EtOH (10 mL)
under an argon atmosphere were added PhB(OH)2 (4a, 0.183 g, 1.50 mmol), Cs2CO3 (0.489
g, 1.5 mmol), Pd(OAc)2 (5.5 mg, 0.0025 mmol), and tri-o-tolylphosphane (5.1 mg, 0.0025 mmol).
After stirring for 24 h at 25 ˚C, the solvent was
removed in a rotary evaporator. The residue was dissolved in a mixture
of Et2O (40 mL) and deionized H2O (40 mL).
The aqueous layer was separated and extracted with three 20 mL portions
of Et2O. The combined organic layers were dried with
anhyd MgSO4, and the solvent was evaporated under reduced
pressure. The yellow-brown crude product was purified by column
chromatography on SiO2 (hexane-EtOAc, 6:1) to
give yellowish, oily 1aa (0.153 g, 61%).
Spectroscopic
Data
Compound 1aa: ¹H
NMR (500 MHz, CDCl3): δ = 2.38
(m, 2 H, CH2Ph), 2.93 (m, 1 H, 3-H), 4.41 (dq, J
d = 13.16
Hz, J
q = 2.13
Hz, 1 H, 5-H), 4.54 (dt, J
d = 13.24
Hz, J
t = 1.66
Hz, 1 H, 5-H), 4.61 (d, J = 6.31
Hz, 1 H, 2-H), 4.75 (q, J = 2.36 Hz,
1 H, C=CHH), 4.90 (q, J = 2.05 Hz,
1 H, C=CHH), 7.19 (m, 10 H,
arom. H). This cis-diastereomer differs
in δ = 4.63 (d, J = 1.90 Hz,
1 H, 2-H). ¹³C NMR (125 MHz, CDCl3): δ = 38.7,
53.0, 71.9, 86.4, 105.5, 115.7, 121.1, 126.6, 126.7, 128.0, 128.7,
129.6, 130.1, 139.7, 141.8, 151. 3. GC-MS (t
R = 9.71
min): m/z (%) = 250
(2) [M]+, 158 (43), 129 (100).
Compound
(2R,3R)-1aa: [α]D
²0 -3.1
(c 1, CHCl3).
Compound 1ab: ¹H NMR (500 MHz,
CDCl3): δ = 2.80
(m, 2 H, CH2Ar), 2.89 (m, 1 H, 3-H), 4.40 (m, 1 H, 5-H),
4.53 (m, 1 H, 5-H), 4.57 (d, J = 6.31
Hz, 1 H, 2-H), 4.76 (q, J = 2.21
Hz, 1 H, C=CHH), 4.90 (q, J = 1.26 Hz,
1 H, C=CHH), 7.22 (m, 9 H, arom.
H). This cis-diastereomer differs in δ = 4.61
(d, J = 1.58
Hz, 1 H, 2-H). ¹³C NMR (125 MHz, CDCl3): δ = 16.57,
32.94, 41.62, 71.83, 85.27, 105.52, 125.82, 126.77, 127.35, 128.73,
129.57, 130.08, 131.97, 130.06, 144.22, 152.99. GC-MS [t
R = 12.06 min(trans); t
R = 12.10
min(cis)]: m/z (%) = 296
(23) [M]+, 158 (50), 137 (100).
Compound 1ac: ¹H NMR (500 MHz,
CDCl3): δ = 2.90
(m, 2 H, CH2Ar), 2.98 (m, 1 H, 3-H), 4.50 (m, 1 H, 5-H),
4.64 (m, 1 H, 5-H), 4.65 (d, J = 6.0
Hz, 1 H, 2-H), 4.84 (d, J = 1.89 Hz,
1 H, C=CHH), 5.01 (d, J = 1.58 Hz,
1 H, C=CHH), 7.09 (d, J = 8.20 Hz,
2 H, m-ArCl), 7.28 (m, 7 H, arom. H). ¹³C NMR
(125 MHz, CDCl3): δ = 22.02,
27.96, 31.83, 35.68, 69.25, 86.53, 101.37, 124.51, 127.04, 129.65,
130.51, 141.74, 154.69. GC-MS (t
R = 10.70
min): m/z (%) = 284
(5) [M]+, 158 (72), 143 (100).
Compound 1ad: ¹H NMR (500 MHz,
CDCl3): δ = 0.81
(m, 3 H, CH3), 1.21 (m, 10 H, CH2), 1.87 (m,
1 H, CHCHH), 2.33 (m, CHCHH), 2.58 (m, 1 H, 3-H), 4.35 (dq, J
d = 13.24 Hz, J
q = 2.21
Hz, 1 H, 5-H), 4.54 (m, 1 H, 5-H), 4.92 (q, J = 2.05
Hz, 1 H, 2-H), 5.27 (m, 2 H, C=CHH,
CH=CH), 5.41 (m, 2 H, C=CHH, CH=CH),
7.27 (d, J = 4.10
Hz, 2 H, o-arom. H), 7.38 (t, J = 7.72 Hz,
2 H, m-arom. H), 7.53 (dd, J = 1.10,
8.35 Hz, 1 H, p-arom. H). ¹³C
NMR (125 MHz, CDCl3): δ = 15.0,
21.2, 24.4, 27.9, 31.5, 33.1, 34.7, 58.1, 70.5, 90.3, 109.6, 125.0,
126.1, 127.6, 129.2, 130.0, 136.5, 149.9. GC-MS (t
R = 10.70
min): m/z (%) = 284
(32) [M]+, 269 (38), 172 (45),
158 (100).
Compound 1ae: ¹H
NMR (500 MHz, CDCl3): δ = 1.25
(d, J = 6.31
Hz, 6 H, CH3), 1.29 (m, 2 H, CH
2Ph), 1.38 (m, 1 H, CHCH3), 2.94 (q, J = 7.25 Hz,
1 H, 3-H), 4.75 (m, 2 H, 5-H), 5.13 (d, J = 10.40
Hz, 1 H, 2-H), 5.27 (t, J = 1.42
Hz 1 H, C=CHH), 5.30 (t, J = 1.42 Hz,
1 H, C=CHH), 7.25 (m, 5 H, arom.
H). ¹³C NMR (125 MHz, CDCl3): δ = 22.02,
27.96, 31.83, 35.68, 69.25, 86.53, 101.37, 124.51, 127.04, 129.65, 130.51,
141.74, 154.69. GC-MS (t
R = 10.70
min): m/z (%) = 165
(10) [M - C4H3]+,
139 (12), 123 (85), 97 (100).
Compound 1ba: ¹H
NMR (500 MHz, CDCl3): δ = 0.93
(d, J = 6.31
Hz, 3 H, CH3), 2.63 (m, 2 H, CH2Ph), 2.87
(m, 1 H, 3-H), 3.68 (quint, J = 6.46
Hz, 1 H, 2-H), 4.21 (dq, J
d = 13.24 Hz, J
q = 2.21
Hz, 1 H, 5-H), 4.35 (dt, J
d = 13.24
Hz, J
t = 1.42 Hz,
1 H, 5-H), 4.79 (q, J = 2.21
Hz, 1 H, C=CHH), 4.78 (q, J = 2.05 Hz,
1 H, C=CHH), 7.17 (m, 5 H, arom.
H). ¹³C NMR (125 MHz, CDCl3): δ = 15.87
(cis), 20.30 (trans), 38.58,
51.75, 70.78, 81.29, 104.65, 115.70, 126.64, 128.81, 129.44, 130.05,
140.08, 152.57. GC-MS [t
R = 10.70 min(trans), 6.71 min(cis)]: m/z (%) = 188
(5) [M]+, 143 (17), 129 (100),
97 (70).
Compound 1bb: ¹H
NMR (500 MHz, CDCl3): δ = 0.96
(d, J = 6.31 Hz,
3 H, CH3), 2.41 (s, 3 H, SCH3), 2.58 (dd, J = 14.03,
8.04 Hz, 2 H, CH2Ar), 2.81 (dd, J = 14.19,
6.13 Hz, 1 H, 3-H), 3.66 (quint, J = 6.38
Hz, 1 H, 2-H), 4.19 (q, J = 2.21
Hz, 1 H, 5-H), 4.21 (q, J = 2.21
Hz, 1 H, 5-H), 4.78 (q, J = 2.36
Hz, 1 H, C=CHH), 4.87 (q, J = 2.21 Hz,
1 H, C=CHH), 7.13 (m, 4 H, arom.
H.). ¹³C NMR (125 MHz, CDCl3): δ = 11.12,
21.17, 38.03, 44.76, 70.85, 79.92, 114.87, 127.57, 128.73, 130.37,
138.39, 149.53. GC-MS
[t
R = 10.70
min, 9.09 min(trans), 9.30 min(cis)]: m/z (%) = 234
(12) [M]+, 137 (100), 122
(8).
Compound 1bc: ¹H
NMR (500 MHz, CDCl3): δ = 0.96
(d, J = 6.31
Hz, 3 H, CH3), 2.41 (m, 1 H, CHHPh),
2.59 (m, 1 H, CHHPh), 2.81 (dd, J = 14.03,
6.46 Hz, 1 H, 3-H), 3.66 (quint, J = 6.31
Hz, 1 H, 2-H), 4.20 (dq, J
d = 13.24
Hz, J
q = 2.21
Hz, 1 H, 5-H), 4.34 (dt, J
d = 13.03
Hz, J
t = 1.85
Hz, 1 H, 5-H), 4.76 (q, J = 2.21
Hz, 1 H, C=CHH), 4.78 (q, J = 2.21 Hz,
1 H, C=CHH), 7.07 (m, 2 H, o-arom. H), 7.19 (m, 2 H, m-arom. H). ¹³C
NMR (125 MHz, CDCl3): δ = 20.33,
37.92, 51.69, 70.81, 81.07, 104.89, 128.92, 130.77, 132.92, 138.55,
153.58. GC-MS [t
R = 7.75 min(trans), 7.98 min(cis)]: m/z (%) = 222
(1) [M]+, 143 (70), 125 (100),
97 (75).
Compound 1ca: ¹H
NMR (500 MHz, CDCl3): δ = 0.71
(d, J = 6.94
Hz, 3 H, CH3), 0.78 (d, J = 6.94
Hz, 3 H, CH3), 1.48 (m, 1 H, CHCH3),
2.71 (m, 2 H, CH2Ph), 3.39 (m, 1 H, 3-H), 3.42 (m, 1
H, 2-H), 4.26 (m, 2 H, 5-H), 4.67 (d, J = 2.21
Hz, 1 H, C=CHH), 4.83 (d, J = 1.58 Hz,
1 H, C=CHH), 7.23 (m, 5 H, arom.
H). ¹³C NMR (125 MHz, CDCl3): δ = 17.93, 19.60,
31.63, 40.89, 48.30, 70.88, 89.81, 105.17, 126.57, 127.66, 128,68,
129.65, 140.31, 141.65, 152.27. GC-MS
[t
R = 7.21 min(trans), 7.31 min(cis)]: m/z (%) = 216
(7) [M]+, 173 (15), 155 (45),
143 (45), 129 (85), 91 (100).
Compound 2: ¹H NMR (500 MHz,
CDCl3): δ = 2.73
(m, 1 H, 3-H), 2.92 (m, 2 H, CH2Ph), 3.84 (d, J = 17.34
Hz, 1 H, 5-H), 4.25 (d, J = 16.08
Hz, 1 H, 5-H), 4.73 (d, J = 9.48
Hz,
1 H, 2-H), 7.30 (m, 10 H, arom. H). ¹³C
NMR (125 MHz, CDCl3): δ = 32.58,
56.36, 72.13, 84.00, 126.80, 127.07, 129.07, 129.76, 130.25, 131.88,
140.08, 142.04, 216.12. GC-MS (t
R = 9.91
min): m/z (%) = 252
(1) [M]+, 193 (10), 161 (100).
Compound 9: ¹H NMR (500 MHz,
CDCl3): δ = 2.68
(m, 2 H, CH2Ph), 3.28 (m, 1 H, 5-H), 4.55 (d, J = 10.09
Hz, 1 H, 6-H), 5.18 (d, J = 5.67
Hz, 1 H, 2-H), 5.35 (d, J = 5.67
Hz,
1 H, 2-H), 7.22 (m, 10 H, arom. H). ¹³C
NMR (125 MHz, CDCl3): δ = 33.30,
49.61, 80.49, 93.20, 127.34, 127.81, 129.11, 129.41, 129.76, 129.99,
137.93, 137.97, 170.04. GC-MS (t
R = 10.82
min): m/z (%) = 268
(13) [M]+, 238 (13), 193 (22) [M],
176 (72), 91 (100).