Synlett 2009(6): 853-885  
DOI: 10.1055/s-0028-1088213
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

In Pursuit of an Ideal Carbon-Carbon Bond-Forming Reaction: Development and Applications of the Hydrovinylation of Olefins

T. V. RajanBabu*
Department of Chemistry, The Ohio State University, 100 W 18th Avenue, Columbus OH 43210, USA
Fax: +1(614)6921685; e-Mail: rajanbabu.1@osu.edu;
Further Information

Publication History

Received 24 July 2008
Publication Date:
16 March 2009 (online)

Abstract

Attempts to introduce the highly versatile vinyl group into other organic molecules in a chemo-, regio-, and stereoselective fashion via catalytic activation of ethylene provided challenging opportunities to explore new ligand and salt effects in homogeneous catalysis. This review provides a personal account of the development of enantioselective reactions involving ethylene.

1 Introduction

1.1 The Origins

1.2 Olefin Dimerization Reactions

2 Hydrovinylation Reactions

2.1 A Brief History of Hydrovinylation Reactions

2.2 Ruthenium- and Cobalt-Catalyzed Hydrovinylation Reactions

2.3 Best Practices prior to 1997: Nickel-Catalyzed Hydrovinyl-ation Reactions

2.4 Mechanism of the Nickel-Catalyzed Hydrovinylation of ­Vinylarenes

2.5 A New Protocol for Hydrovinylation Amenable to Asymmetric Catalysis

2.6 Heterodimerization of Vinylarenes with Other Olefins

2.7 Other Heterodimerization Reactions

2.8 Hydrovinylation of Norbornene

3 Enantioselective Hydrovinylation Reactions

3.1 Azaphospholene Ligands

3.2 Aminophosphine/Phosphinite Ligands

3.3 Use of Chelating Phosphines

4 Synergistic Relation between Hemilabile Ligands and Counterions

4.1 New Ligands for Asymmetric Hydrovinylation Reactions: 2-Alkoxy-2′-diphenylphosphino-1,1′-binaphthyl Derivatives

4.2 Effect of Hemilabile Groups

4.3 Solvent and Salt Effects

4.4 Electronic Effects

4.5 Other Protocols for Nickel-Catalyzed Hydrovinylation ­Reactions

4.6 A Model for Asymmetric Induction in Hydrovinylation ­Reactions

4.7 De Novo Design of an Asymmetric Ligand: Hemilabile Phospholanes

4.8 Diarylphosphinite Ligands

4.9 Phosphite Ligands

4.10 Phosphoramidite Ligands

5 Generation of All-Carbon Quaternary Centers

6 Asymmetric Hydrovinylation of 1,3-Dienes

7 Asymmetric Hydrovinylation of Norbornene

8 Applications of Asymmetric Hydrovinylation Reactions

8.1 (S)-2-Arylpropionic Acids

8.2 (R)-α-Curcumene and (R)-ar-Turmerone

8.3 Control of the Configuration of the Steroidal D-Ring Side Chain

8.4 Intramolecular Reactions: Synthesis of Carbocyclic and Heterocyclic Compounds

9 Large-Scale Synthesis

10 Summary and Future Prospects

    References

  • For a summary of early results, see:
  • 1a RajanBabu TV. Chem. Rev.  2003,  103:  2845 
  • For other pertinent reviews, see:
  • 1b Bogdanovic B. Adv. Organomet. Chem.  1979,  17:  105 
  • 1c Jolly PW. Wilke G. In Applied Homogeneous Catalysis with Organometallic Compounds   Vol. 2:  Cornils B. Herrmann WA. VCH; New York: 1996.  p.1024-1048  
  • 1d RajanBabu TV. Nomura N. Jin J. Radetich B. Park H. Nandi M. Chem. Eur. J.  1999,  5:  1963 
  • 1e Gooßen LJ. Angew. Chem. Int. Ed.  2002,  41:  3775 
  • 2 Wilke G. Angew. Chem., Int. Ed. Engl.  1988,  27:  185 
  • 3 Chauvin Y. Olivier H. In Applied Homogeneous Catalysis with Organometallic Compounds   Vol. 1:  Cornils B. Herrmann WA. VCH; New York: 1996.  p.258-268  
  • 4 Bogdanovic B. Spliethoff B. Wilke G. Angew. Chem., Int. Ed. Engl.  1980,  19:  622 
  • 5a Rieu J.-P. Boucherle A. Cousse H. Mouzin G. Tetrahedron  1986,  42:  4095 
  • 5b Sonawane HR. Bellur NS. Ahuja JR. Kulkarni DG. Tetrahedron: Asymmetry  1992,  3:  163 
  • 5c Stahly GP. Starrett RM. In Chirality in Industry II   Collins AN. Sheldrake GN. Crosby J. Wiley; Chichester: 1997.  p.19 
  • 6a Alderson T. Jenner EL. Lindsey RV. J. Am. Chem. Soc.  1965,  87:  5638 
  • 6b Umezaki H. Fujiwara Y. Sawara K. Teranishi S. Bull. Chem. Soc. Jpn.  1973,  46:  2230 
  • 7 Dzhemilev UM. Gubaidullin LY. Tolstikov GA. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.)  1976,  25:  2009 
  • For the early use of Co, see:
  • 8a Pu LS. Yamamoto A. Ikeda S. J. Am. Chem. Soc.  1968,  90:  7170 
  • 8b Pillai SM. Tembe GL. Ravindranathan M. J. Mol. Catal.  1993,  84:  77 
  • For early studies with Pd catalysts, see:
  • 9a Barlow MG. Bryant MJ. Haszeldine RN. Mackie AG. J. Organomet. Chem.  1970,  21:  215 
  • 9b Kawamoto K. Tatani A. Imanaka T. Teranishi S. Bull. Chem. Soc. Jpn.  1971,  44:  1239 
  • For related studies, see:
  • 9c Drent E. inventors; US Patent  5227561.  ; Chem. Abstr. 1994, 120, 31520
  • 9d Nozima H. Kawata N. Nakamura Y. Maruya K. Mizoroki T. Ozaki A. Chem. Lett.  1973,  1163 
  • 10a Kawata N. Maruya K. Mizoroki T. Ozaki A. Bull. Chem. Soc. Jpn.  1971,  44:  3217 
  • 10b Kawata N. Maruya K. Mizoroki T. Ozaki A. Bull. Chem. Soc. Jpn.  1974,  47:  413 
  • 10c Kawakami K. Kawata N. Maruya K. Mizoroki T. Ozaki A. J. Catal.  1975,  39:  134 
  • 10d

    See also ref. 7.

  • 10e Azizov AG. Mamedaliev GA. Aliev SM. Aliev VS. Azerb. Khim. Zh.  1978,  3 ; Chem. Abstr. 1979, 90, 6002
  • 10f Azizov AG. Mamedaliev GA. Aliev SM. Aliev VS. Azerb. Khim. Zh.  1979,  3 ; Chem. Abstr. 1980, 93, 203573
  • 10g Mamedaliev GA. Azizov AG. Yu G. Polym. J. (Tokyo, Jpn.)  1985,  17:  1075;   Chem. Abstr.  1986,  104:  34390 
  • 11a Bogdanovic B. Henc B. Meister B. Pauling H. Wilke G. Angew. Chem., Int. Ed. Engl.  1972,  11:  1023 
  • 11b Bogdanovic B. Henc B. Lösler A. Meister B. Pauling H. Wilke G. Angew. Chem., Int. Ed. Engl.  1973,  12:  954 
  • Among asymmetric metal-catalyzed carbon-carbon bond-forming reactions, only Nozaki’s Cu(II)-catalyzed cyclopropanation of styrene with ethyl diazo-acetate predates this discovery, see:
  • 11c Nozaki H. Moriuti S. Takaya H. Noyori R. Tetrahedron Lett.  1966,  5239 
  • 12a Britovsek GJP. Keim W. Mecking S. Sainz D. Wagner T. J. Chem. Soc., Chem. Commun.  1993,  1632 
  • 12b Britovsek GJP. Cavell KJ. Keim W. J. Mol. Catal. A: Chem.  1996,  110:  77 
  • For a related dendrimeric Pd catalyst, see:
  • 12c Hovestad NJ. Eggeling EB. Heidbüchel HJ. Jastrzebski JTBH. Kragl U. Keim W. Vogt D. van Koten G. Angew. Chem. Int. Ed.  1999,  38:  1655 
  • For a full report on dendrimeric Pd catalysts, see:
  • 12d Eggeling EB. Hovestad NJ. Jastrzebski TBH. Vogt D. van Koten G. J. Org. Chem.  2000,  65:  8857 
  • 12e Shi W.-J. Xie J.-H. Zhou Q.-L. Tetrahedron: Asymmetry  2005,  16:  705 
  • 13 Bayersdörfer R. Ganter B. Englert U. Keim W. Vogt D. J. Organomet. Chem.  1998,  552:  187 
  • 14a Albert J. Cadena M. Granell J. Muller G. Ordinas JI. Panyella D. Puerta C. Sanudo C. Valerga P. Organometallics  1999,  18:  3511 
  • For the use of other highly basic phosphines, see:
  • 14b Albert J. Bosque R. Cadena JM. Delgado S. Granell J. Muller G. Ordinas JI. Bardia MF. Solans X. Chem. Eur. J.  2002,  8:  2279 
  • 14c Englert U. Haerter R. Vasen D. Salzer A. Eggeling EB. Vogt D. Organometallics  1999,  18:  4390 
  • 15a Ceder R. Muller G. Ordinas JI. J. Mol. Catal.  1994,  92:  127 
  • 15b Muller G. Ordinas JI. J. Mol. Catal. A: Chem.  1997,  125:  97 
  • 16a Monteiro AL. Seferin M. Dupont J. Souza RF. Tetrahedron Lett.  1996,  37:  1157 
  • 16b Fassina V. Ramminger C. Seferin M. Monteiro AL. Tetrahedron  2000,  56:  7403 
  • 17a Yi CS. He Z. Lee DW. Organometallics  2001,  20:  802 
  • 17b RajanBabu TV. Nomura N. Jin J. Nandi M. Park H. Sun X. J. Org. Chem.  2003,  68:  8431 
  • These results have since been confirmed in another more recent publication, see:
  • 17c Sanchez RP. Connell BT. Organometallics  2008,  27:  2902 
  • 18a Grutters MMP. Müller C. Vogt D. J. Am. Chem. Soc.  2006,  128:  7414 
  • For a related reaction, see:
  • 18b Hilt G. Lüers S. Synthesis  2002,  609 
  • 19 Wilke G, Monkiewicz J, and Kuhn H. inventors; US Patent  4912274.  ; Chem. Abstr. 1991, 114, 43172
  • Use of the Wilke catalyst system in supercritical carbon dioxide has since been reported, see:
  • 20a Wegner A. Leitner W. Chem. Commun.  1999,  1583 
  • 20b Bösmann A. Franciò G. Janssen E. Solinas M. Leitner W. Wasserscheid P. Angew. Chem. Int. Ed.  2001,  40:  2697 
  • 21 Angermund K. Eckerle A. Lutz F. Z. Naturforsch., B  1995,  50:  488 
  • 22 Nomura N. Jin J. Park H. RajanBabu TV. J. Am. Chem. Soc.  1998,  120:  459 
  • 23 Müller U. Keim W. Krüger C. Betz P. Angew. Chem. Int. Ed.  1989,  28:  1011 
  • 24 We thank Professor Brookhart and Dr. DiRenzo for a copy of the following dissertation: Mechanistic Studies of Catalytic Olefin Dimerization Reactions Using Electrophilic η3-allyl-Palladium(II) Complexes: DiRenzo GM. Ph.D. Thesis   University of North Carolina; USA: 1997. 
  • 25 Brandes H. Goddard R. Jolly PW. Krüger C. Mynott R. Wilke G. Z. Naturforsch. B  1984,  39:  1139 
  • 26 Barnett BL. Krüger C. J. Organomet. Chem.  1974,  77:  407 
  • 27 Jin J. RajanBabu TV. Tetrahedron  2000,  56:  2145 
  • 28a Kumareswaran R. Nandi N. RajanBabu TV. Org. Lett.  2003,  5:  4345 
  • 28b Park H. Kumareswaran R. RajanBabu TV. Tetrahedron Symposia-in-Print  2005,  61:  6352 
  • 29 Buono G. Siv C. Peiffer G. Triantaphylides C. Denis P. Mortreux A. Petit F. J. Org. Chem.  1985,  50:  1781 
  • 30 Nandi M. Jin J. RajanBabu TV. J. Am. Chem. Soc.  1999,  121:  9899 
  • For a discussion of hemilabile ligands, see:
  • 31a Jeffrey JC. Rauchfuss TB. Inorg. Chem.  1979,  18:  2658 
  • 31b Bader A. Lindner E. Coord. Chem. Rev.  1991,  108:  27 
  • 31c Slone CS. Weinberger DA. Mirkin CA. In Progress in Inorganic Chemistry   Vol. 48:  Karlin KD. Wiley; New York: 1999.  p.233-350  
  • 32a Mecking S. Keim W. Organometallics  1996,  15:  2650 
  • 32b Keim W. Angew. Chem., Int. Ed. Engl.  1990,  29:  235 
  • 32c Bonnet MC. Dahan F. Ecke A. Keim W. Schulz RP. Tkatchenko I. J. Chem. Soc., Chem. Commun.  1994,  615 
  • 32d Keim W. Maas H. Mecking S. Z. Naturforsch., B  1995,  50:  430 
  • 32e

    See also ref. 12a

  • 32f

    See also ref. 12b

  • 33 Uozumi Y. Tanahashi A. Lee S.-Y. Hayashi T. J. Org. Chem.  1993,  58:  1945 
  • 35a Nishida H. Takada N. Yoshimura M. Sonoda T. Kobayashi H. Bull. Chem. Soc. Jpn.  1984,  57:  2600 
  • 35b Brookhart M. Grant B. Volpe A. Organometallics  1992,  11:  3920 
  • For the use of BARF- in related reactions, see:
  • 35c DiRenzo GM. White PS. Brookhart M. J. Am. Chem. Soc.  1996,  118:  6225 
  • 36 Braunstein P. Chauvin Y. Nähring J. DeCian A. Fischer J. Tiripicchio A. Ugozzoli F. Organometallics  1996,  15:  5551 
  • 37 Saha B. RajanBabu TV. J. Org. Chem.  2007,  72:  2357 
  • Examination of electronic effects has become common practice in asymmetric catalysis. For some early examples of the electronic tuning of asymmetric catalysts, see:
  • 38a Inoguchi K. Sakuraba S. Achiwa K. Synlett  1992,  169 
  • 38b Jacobsen EN. Zhang W. Guler ML. J. Am. Chem. Soc.  1991,  113:  6703 
  • 38c RajanBabu TV. Casalnuovo AL. J. Am. Chem. Soc.  1992,  114:  6265 
  • 38d RajanBabu TV. Ayers TA. Casalnuovo AL. J. Am. Chem. Soc.  1994,  116:  4101 
  • 38e Schnyder A. Hintermann L. Togni A. Angew. Chem., Int. Ed. Engl.  1995,  34:  931 
  • For other examples from our work, see:
  • 38f Casalnuovo AL. RajanBabu TV. Ayers TA. Warren TH. J. Am. Chem. Soc.  1994,  116:  9869 
  • 38g RajanBabu TV. Casalnuovo AL. J. Am. Chem. Soc.  1996,  118:  6325 
  • 38h RajanBabu TV. Ayers TA. Halliday GA. You KK. Calabrese JC. J. Org. Chem.  1997,  62:  6012 
  • 38i RajanBabu TV. Radetich B. You KK. Ayers TA. Casalnuovo AL. Calabrese JC. J. Org. Chem.  1999,  64:  3429 
  • 38j Clyne DS. Mermet-Bouvier YC. Nomura N. RajanBabu TV. J. Org. Chem.  1999,  64:  7601 
  • 38k Yan Y. RajanBabu TV. Org. Lett.  2000,  2:  4137 
  • 39 Komon ZJA. Bu X. Bazan GC. J. Am. Chem. Soc.  2000,  122:  1830 
  • 40 Zhang A. RajanBabu TV. Org. Lett.  2004,  6:  1515 
  • 41 Park H. RajanBabu TV. J. Am. Chem. Soc.  2002,  124:  734 
  • 43 Feringa BL. Acc. Chem. Res.  2000,  33:  346 
  • 44 Arnold LA. Imbos R. Mandoli A. de Vries AHM. Naasz R. Feringa BL. Tetrahedron  2000,  56:  2865 
  • For representative examples of the use of finely tuned phosphoramidites from various research groups, see:
  • 45a Alexakis A. Polet D. Rosset S. March S. J. Org. Chem.  2004,  69:  5660 
  • 45b Bernsmann H. van den Berg M. Hoen R. Minnaard AJ. Mehler G. Reetz MT. De Vries JG. Feringa BL. J. Org. Chem.  2005,  70:  943 
  • 45c Streiff S. Welter C. Schelwies M. Lipowsky G. Miller N. Helmchen G. Chem. Commun.  2005,  2957 
  • 45d Leitner A. Shekhar S. Pouy MJ. Hartwig JF. J. Am. Chem. Soc.  2005,  127:  15506 
  • 45e Yu RT. Rovis T. J. Am. Chem. Soc.  2006,  128:  12370 
  • 45f Du H. Yuan W. Zhao B. Shi Y. J. Am. Chem. Soc.  2007,  129:  11688 
  • 46a Franció G. Faraone F. Leitner W. J. Am. Chem. Soc.  2002,  124:  736 
  • For a computational study of the phosphoramidite ligand system, see:
  • 46b Hölscher M. Franció G. Leitner W. Organometallics  2004,  23:  5606 
  • 47a Smith CR. RajanBabu TV. Org. Lett.  2008,  10:  1657 
  • For a scalable procedure for the synthesis of phosphoramidites, see:
  • 47b Smith CR. Mans DJ. RajanBabu TV. Org. Synth.  2008,  85:  238 
  • For reviews and a history of the problem, see:
  • 50a Douglas CJ. Overman LE. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  5363 ; and references cited therein
  • 50b Denissova I. Barriault L. Tetrahedron  2003,  59:  10105 
  • 50c Corey EJ. Guzman-Perez A. Angew. Chem. Int. Ed.  1998,  37:  388 
  • 50d Romo D. Meyers AI. Tetrahedron  1991,  47:  9503 
  • 50e Martin SF. Tetrahedron  1980,  36:  419 
  • 51 Takemoto T. Sodeoka M. Sasai H. Shibasaki M. J. Am. Chem. Soc.  1993,  115:  8477 ; corrigendum: J. Am. Chem. Soc. 1994, 116, 11207
  • 52 For a leading reference, see: Edwards DJ. Gerwick WH. J. Am. Chem. Soc.  2004,  126:  11432 
  • 53 Huang A. Kodanko JJ. Overman LE. J. Am. Chem. Soc.  2004,  126:  14043 
  • 54 Denmark SE. Fu J. Org. Lett.  2002,  4:  1951 
  • 55a Zhang A. RajanBabu TV. J. Am. Chem. Soc.  2006,  128:  5620 
  • For the use of another phosphoramidite, see:
  • 55b Shi W.-J. Zhang Q. Xie J.-H. Zhu S.-F. Hou G.-H. Zhou Q.-L. J. Am. Chem. Soc.  2006,  128:  2780 
  • 56a Zhang A. RajanBabu TV. J. Am. Chem. Soc.  2006,  128:  54 
  • 56b

    Dan Mans in our group has since completed the synthesis of a number of pseudopterosin aglycones by applying back-to-back enantioselective hydrovinylations of vinylarenes and dienes. This work will be reported in due course.

  • 57 For a detailed procedure of this and other related hydrovinylation reactions, see: Smith CR. Zhang A. Mans DJ. RajanBabu TV. Org. Synth.  2008,  85:  248 
  • 58a Hulme AN. Henry SS. Meyers AI. J. Org. Chem.  1995,  60:  1265 
  • 58b Fadel A. Arzel P. Tetrahedron: Asymmetry  1997,  8:  371 
  • For an early example (non-asymmetric) of the co-dimerization of ethylene and dienes, see:
  • 59a Su ACL. Adv. Organomet. Chem.  1979,  17:  269 
  • 59b Peiffer G. Cochet X. Petit F. Bull. Soc. Chim. Fr. II  1979,  415 
  • 60 He Z. Yi CS. Donaldson WA. Org. Lett.  2003,  5:  1567 
  • 61 He Z. Yi CS. Donaldson WA. Synlett  2004,  1312 
  • Apart from Diels-Alder reactions, the asymmetric catalyzed carbon-carbon bond-forming reactions of acyclic 1,3-dienes give only moderate regio- and enantioselectivities. See the following examples. Cyclopropanation:
  • 62a Doyle M. In Catalytic Asymmetric Synthesis   Ojima I. Wiley-VCH; New York: 2000.  p.191-228  
  • Ene reaction:
  • 62b Terada M. Mikami K. J. Chem. Soc., Chem. Commun.  1995,  2391 
  • Hydroformylation:
  • 62c Horiuchi T. Ohta T. Shirakawa E. Nozaki K. Takaya H. Tetrahedron  1997,  53:  7795 
  • Hydrocyanation:
  • 62d Saha B. RajanBabu TV. Org. Lett.  2006,  8:  4657 
  • 64 Hodgson M. Parker D. Taylor RJ. Ferguson G. Organometallics  1988,  7:  1761 
  • See the following for the best asymmetric routes to date [no useful catalytic asymmetric methods are known for other (S)-2-arylpropionic acid precursors]. Naproxen via Ru-catalyzed asymmetric hydrogenation of 2-arylacrylic acids (98% ee):
  • 66a Ohta T. Takaya H. Kitamura M. Nagai K. Noyori R. J. Org. Chem.  1987,  52:  3174 
  • Ni-catalyzed asymmetric hydrocyanation (95% ee):
  • 66b

    See also ref. 38g; and references cited therein. Ibuprofen via Ru-catalyzed hydrogenation (97% ee):

  • 66c Uemura T. Zhang X. Matsumura K. Sayo N. Kumobayashi H. Ohta T. Nozaki K. Takaya H. J. Org. Chem.  1996,  61:  5510 
  • Rh-catalyzed asymmetric hydroformylation (92% ee):
  • 66d Nozaki K. Sakai N. Nanno T. Higashijima T. Mano S. Horiuchi T. Takaya H. J. Am. Chem. Soc.  1997,  119:  4413 
  • Hydrovinylation (91% ee):
  • 66e

    See ref. 40. Flurbiprofen via dynamic kinetic resolution:

  • 66f Norinder J. Bogár K. Kaupp L. Backvall J.-E. Org. Lett.  2007,  9:  5095 
  • For publications, see the following and references cited therein. Bisabolanes:
  • 68a Hagiwara H. Okabe T. Ono H. Kamat VP. Hoshi T. Suzuki T. Ando M. J. Chem. Soc., Perkin Trans. 1  2002,  895 
  • 68b Vyvyan JR. Loitz C. Looper RE. Mattingly CS. Peterson EA. Staben ST. J. Org. Chem.  2004,  69:  2461 
  • Heliannanes:
  • 68c Kishuku H. Shindo M. Shishido K. Chem. Commun.  2003,  350 
  • Pseudopterosins:
  • 68d Look SA. Fenical W. Jacobs RS. Clardy J. Proc. Natl. Acad. Sci. U.S.A.  1986,  83:  6238 
  • 68e Johnson TW. Corey EJ. J. Am. Chem. Soc.  2003,  125:  13486 
  • 68f Harrowven DC. Tyte MJ. Tetrahedron Lett.  2004,  45:  2089 
  • Serrulatanes:
  • 68g Rodriguez A. Ramirez C. J. Nat. Prod.  2001,  64:  100 
  • 68h Dehmel F. Lex J. Schmalz H.-G. Org. Lett.  2002,  4:  3915 
  • 70 Hagiwara H. Okabe T. Ono H. Kamat VP. Hoshi T. Suzuki T. Ando M. J. Chem. Soc., Perkin Trans. 1  2002,  895 
  • 71 Zhang A. RajanBabu TV. Org. Lett.  2004,  6:  3159 
  • For a leading reference and discussion and citations of earlier work, see:
  • 72a Guevel A.-C. Hart DJ. J. Org. Chem.  1996,  61:  465 ; and references cited therein
  • For a pedagogical view of this problem and a historical account of the syntheses of erythro- and threo-juvabiones, see:
  • 72b Carey FA. Sundberg RJ. Advanced Organic Chemistry   2nd ed., Vol. 2:  Kluwer; New York: 2001.  p.848-859  
  • 72c Trost BM. Verhoeven TR. J. Am. Chem. Soc.  1976,  98:  630 
  • 72d Snider BB. Acc. Chem. Res.  1980,  13:  426 
  • 72e Snider BB. Deutsch EA. J. Org. Chem.  1983,  48:  1823 
  • 72f Wulkovich PM. Barcelos A. Sereno JF. Baggiolini EG. Hennesey BM. Uskokovic MR. Tetrahedron  1984,  40:  2283 
  • 72g Andersen NH. Hadley SW. Kelly JD. Bacon ER. J. Org. Chem.  1985,  50:  4144 
  • 72h Mikami K. Kawamoto K. Nakai T. Tetrahedron Lett.  1985,  26:  5799 
  • 72i Mikami K. Loh T.-P. Nakai T. J. Chem. Soc., Chem. Commun.  1988,  1430 
  • 72j Houston TA. Tonaka Y. Koreeda M. J. Org. Chem.  1993,  58:  4287 
  • For recent references dealing with the side chain of the anticancer natural product OSW-1, see:
  • 72k Yu W. Jin Z. J. Am. Chem. Soc.  2002,  124:  6576 
  • 73a Honzawa S. Suhara Y. Nihei K. Saito N. Kishimoto S. Fujishima T. Kurihara M. Sugiura T. Waku K. Takayama H. Kittaka A. Bioorg. Med. Chem. Lett.  2003,  13:  3503 ; and references cited therein
  • For leading references, see:
  • 73b Kabat MM. Garofalo LM. Daniewski AJ. Hutchings SD. Liu W. Okabe M. Radinov R. Zhou Y. J. Org. Chem.  2001,  66:  6141 
  • 74a Fujishima T. Konno K. Nakagawa K. Kurobe M. Okano T. Takayama H. Bioorg. Med. Chem.  2000,  8:  123 
  • 74b Fernández B. Martinez Pérez JA. Granja JR. Castedo L. Mourino A. J. Org. Chem.  1992,  57:  3173 
  • See also:
  • 74c Fernández C. Gómez G. Lago C. Momán E. Fall Y. Synlett  2005,  2163 
  • 74d Hijikuro I. Doi T. Takahashi T. J. Am. Chem. Soc.  2001,  123:  3716 
  • For a review of vitamin D chemistry, see:
  • 74e Dai H. Posner GH. Synthesis  1994,  1383 
  • 74f Posner GH. Lee JK. White MC. Hutchings RH. Dai H. Kachinski JL. Dolan P. Kensler TW. J. Org. Chem.  1997,  62:  3299 
  • 75 Saha B. Smith CR. RajanBabu TV. J. Am. Chem. Soc.  2008,  130:  9000 
  • 76 Trost BM. Acc. Chem. Res.  1990,  23:  34 ; and references cited therein
  • For the use of early transition metals, see:
  • 77a Nugent WA. Taber DF. J. Am. Chem. Soc.  1989,  111:  6435 
  • 77b Piers WE. Shapiro PJ. Bunel EE. Bercaw JE. Synlett  1990,  74 
  • 77c Knight KS. Waymouth RM. J. Am. Chem. Soc.  1991,  113:  6268 
  • 77d Molander GA. Hoberg JO. J. Am. Chem. Soc.  1992,  114:  3123 
  • 77e Negishi E. Takahashi T. Acc. Chem. Res.  1994,  27:  124 
  • 77f Dzhemilev UM. Tetrahedron  1995,  51:  4333 
  • 77g Christoffers J. Bergman RG. J. Am. Chem. Soc.  1996,  118:  4715 
  • 77h Thiele S. Erker G. Chem. Ber./Recl.  1997,  130:  201 
  • 77i Yamaura Y. Hyakutake M. Mori M. J. Am. Chem. Soc.  1997,  119:  7615 ; and references cited therein
  • 78a Bright A. Malone JF. Nicholson JK. Powell J. Shaw BL. J. Chem. Soc., Chem. Commun.  1971,  712 
  • 78b

    See also ref. 1b

  • 78c Grigg R. Malone JF. Mitchell TRB. Ramasubbu A. Scott RM. J. Chem. Soc., Perkin Trans. 1  1984,  1745 
  • 78d Behr A. Freudenberg U. Keim W. J. Mol. Catal.  1986,  35:  9 
  • 79 Radetich B. RajanBabu TV. J. Am. Chem. Soc.  1998,  120:  8007 
  • α,ω-Diene cyclization and related reactions have since received a lot of attention. For example, see:
  • 80a Böing C. Franciò G. Leitner W. Chem. Commun.  2005,  1456 
  • 80b Lloyd-Jones GC. Org. Biomol. Chem.  2003,  1:  215 
  • 80c Bothe U. Rudbeck HC. Tanner D. Johannsen M. J. Chem. Soc., Perkin Trans. 1  2001,  3305 
  • 80d Perch NS. Pei T. Widenhoefer RA. J. Org. Chem.  2000,  65:  3836 
34

For a structurally related, unreactive neutral Pd complex, see ref. 12b.

42

For a report on the use of a phosphinite ligand in a Pd-catalyzed hydrovinylation, see ref. 13.

48

To the best of our knowledge, ligand 87 has not been described in the literature. For a complete list of the phosphoramidites used in this study and its corresponding supporting information, see ref. 47.

49

Only naproxen is currently sold in an enantiomerically pure form. For a review of the practical aspects of the synthesis of 2-arylpropionic acids, see ref. 5a.

63

For an extensive list of related references, see ref. 56.

65

For reviews of the synthesis of 2-arylpropionic acids, see ref. 5.

67

Smith, C. R.; RajanBabu, T. V. J. Org. Chem. 2009, 74, in press.

69

For a comparison of the various methods for the synthesis of curcumene, see ref. 71.