Subscribe to RSS
DOI: 10.1055/s-0028-1088213
In Pursuit of an Ideal Carbon-Carbon Bond-Forming Reaction: Development and Applications of the Hydrovinylation of Olefins
Publication History
Publication Date:
16 March 2009 (online)
Abstract
Attempts to introduce the highly versatile vinyl group into other organic molecules in a chemo-, regio-, and stereoselective fashion via catalytic activation of ethylene provided challenging opportunities to explore new ligand and salt effects in homogeneous catalysis. This review provides a personal account of the development of enantioselective reactions involving ethylene.
1 Introduction
1.1 The Origins
1.2 Olefin Dimerization Reactions
2 Hydrovinylation Reactions
2.1 A Brief History of Hydrovinylation Reactions
2.2 Ruthenium- and Cobalt-Catalyzed Hydrovinylation Reactions
2.3 Best Practices prior to 1997: Nickel-Catalyzed Hydrovinyl-ation Reactions
2.4 Mechanism of the Nickel-Catalyzed Hydrovinylation of Vinylarenes
2.5 A New Protocol for Hydrovinylation Amenable to Asymmetric Catalysis
2.6 Heterodimerization of Vinylarenes with Other Olefins
2.7 Other Heterodimerization Reactions
2.8 Hydrovinylation of Norbornene
3 Enantioselective Hydrovinylation Reactions
3.1 Azaphospholene Ligands
3.2 Aminophosphine/Phosphinite Ligands
3.3 Use of Chelating Phosphines
4 Synergistic Relation between Hemilabile Ligands and Counterions
4.1 New Ligands for Asymmetric Hydrovinylation Reactions: 2-Alkoxy-2′-diphenylphosphino-1,1′-binaphthyl Derivatives
4.2 Effect of Hemilabile Groups
4.3 Solvent and Salt Effects
4.4 Electronic Effects
4.5 Other Protocols for Nickel-Catalyzed Hydrovinylation Reactions
4.6 A Model for Asymmetric Induction in Hydrovinylation Reactions
4.7 De Novo Design of an Asymmetric Ligand: Hemilabile Phospholanes
4.8 Diarylphosphinite Ligands
4.9 Phosphite Ligands
4.10 Phosphoramidite Ligands
5 Generation of All-Carbon Quaternary Centers
6 Asymmetric Hydrovinylation of 1,3-Dienes
7 Asymmetric Hydrovinylation of Norbornene
8 Applications of Asymmetric Hydrovinylation Reactions
8.1 (S)-2-Arylpropionic Acids
8.2 (R)-α-Curcumene and (R)-ar-Turmerone
8.3 Control of the Configuration of the Steroidal D-Ring Side Chain
8.4 Intramolecular Reactions: Synthesis of Carbocyclic and Heterocyclic Compounds
9 Large-Scale Synthesis
10 Summary and Future Prospects
Key words
carbon-carbon bond formation - hydrovinylations - asymmetric catalysis - ligand effects - transition metals
- For a summary of early results, see:
-
1a
RajanBabu TV. Chem. Rev. 2003, 103: 2845 - For other pertinent reviews, see:
-
1b
Bogdanovic B. Adv. Organomet. Chem. 1979, 17: 105 -
1c
Jolly PW.Wilke G. In Applied Homogeneous Catalysis with Organometallic Compounds Vol. 2:Cornils B.Herrmann WA. VCH; New York: 1996. p.1024-1048 -
1d
RajanBabu TV.Nomura N.Jin J.Radetich B.Park H.Nandi M. Chem. Eur. J. 1999, 5: 1963 -
1e
Gooßen LJ. Angew. Chem. Int. Ed. 2002, 41: 3775 - 2
Wilke G. Angew. Chem., Int. Ed. Engl. 1988, 27: 185 - 3
Chauvin Y.Olivier H. In Applied Homogeneous Catalysis with Organometallic Compounds Vol. 1:Cornils B.Herrmann WA. VCH; New York: 1996. p.258-268 - 4
Bogdanovic B.Spliethoff B.Wilke G. Angew. Chem., Int. Ed. Engl. 1980, 19: 622 -
5a
Rieu J.-P.Boucherle A.Cousse H.Mouzin G. Tetrahedron 1986, 42: 4095 -
5b
Sonawane HR.Bellur NS.Ahuja JR.Kulkarni DG. Tetrahedron: Asymmetry 1992, 3: 163 -
5c
Stahly GP.Starrett RM. In Chirality in Industry IICollins AN.Sheldrake GN.Crosby J. Wiley; Chichester: 1997. p.19 -
6a
Alderson T.Jenner EL.Lindsey RV. J. Am. Chem. Soc. 1965, 87: 5638 -
6b
Umezaki H.Fujiwara Y.Sawara K.Teranishi S. Bull. Chem. Soc. Jpn. 1973, 46: 2230 - 7
Dzhemilev UM.Gubaidullin LY.Tolstikov GA. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1976, 25: 2009 - For the early use of Co, see:
-
8a
Pu LS.Yamamoto A.Ikeda S. J. Am. Chem. Soc. 1968, 90: 7170 -
8b
Pillai SM.Tembe GL.Ravindranathan M. J. Mol. Catal. 1993, 84: 77 - For early studies with Pd catalysts, see:
-
9a
Barlow MG.Bryant MJ.Haszeldine RN.Mackie AG. J. Organomet. Chem. 1970, 21: 215 -
9b
Kawamoto K.Tatani A.Imanaka T.Teranishi S. Bull. Chem. Soc. Jpn. 1971, 44: 1239 - For related studies, see:
-
9c
Drent E. inventors; US Patent 5227561. ; Chem. Abstr. 1994, 120, 31520 -
9d
Nozima H.Kawata N.Nakamura Y.Maruya K.Mizoroki T.Ozaki A. Chem. Lett. 1973, 1163 -
10a
Kawata N.Maruya K.Mizoroki T.Ozaki A. Bull. Chem. Soc. Jpn. 1971, 44: 3217 -
10b
Kawata N.Maruya K.Mizoroki T.Ozaki A. Bull. Chem. Soc. Jpn. 1974, 47: 413 -
10c
Kawakami K.Kawata N.Maruya K.Mizoroki T.Ozaki A. J. Catal. 1975, 39: 134 -
10d
See also ref. 7.
-
10e
Azizov AG.Mamedaliev GA.Aliev SM.Aliev VS. Azerb. Khim. Zh. 1978, 3 ; Chem. Abstr. 1979, 90, 6002 -
10f
Azizov AG.Mamedaliev GA.Aliev SM.Aliev VS. Azerb. Khim. Zh. 1979, 3 ; Chem. Abstr. 1980, 93, 203573 -
10g
Mamedaliev GA.Azizov AG.Yu G. Polym. J. (Tokyo, Jpn.) 1985, 17: 1075; Chem. Abstr. 1986, 104: 34390 -
11a
Bogdanovic B.Henc B.Meister B.Pauling H.Wilke G. Angew. Chem., Int. Ed. Engl. 1972, 11: 1023 -
11b
Bogdanovic B.Henc B.Lösler A.Meister B.Pauling H.Wilke G. Angew. Chem., Int. Ed. Engl. 1973, 12: 954 - Among asymmetric metal-catalyzed carbon-carbon bond-forming reactions, only Nozaki’s Cu(II)-catalyzed cyclopropanation of styrene with ethyl diazo-acetate predates this discovery, see:
-
11c
Nozaki H.Moriuti S.Takaya H.Noyori R. Tetrahedron Lett. 1966, 5239 -
12a
Britovsek GJP.Keim W.Mecking S.Sainz D.Wagner T. J. Chem. Soc., Chem. Commun. 1993, 1632 -
12b
Britovsek GJP.Cavell KJ.Keim W. J. Mol. Catal. A: Chem. 1996, 110: 77 - For a related dendrimeric Pd catalyst, see:
-
12c
Hovestad NJ.Eggeling EB.Heidbüchel HJ.Jastrzebski JTBH.Kragl U.Keim W.Vogt D.van Koten G. Angew. Chem. Int. Ed. 1999, 38: 1655 - For a full report on dendrimeric Pd catalysts, see:
-
12d
Eggeling EB.Hovestad NJ.Jastrzebski TBH.Vogt D.van Koten G. J. Org. Chem. 2000, 65: 8857 -
12e
Shi W.-J.Xie J.-H.Zhou Q.-L. Tetrahedron: Asymmetry 2005, 16: 705 - 13
Bayersdörfer R.Ganter B.Englert U.Keim W.Vogt D. J. Organomet. Chem. 1998, 552: 187 -
14a
Albert J.Cadena M.Granell J.Muller G.Ordinas JI.Panyella D.Puerta C.Sanudo C.Valerga P. Organometallics 1999, 18: 3511 - For the use of other highly basic phosphines, see:
-
14b
Albert J.Bosque R.Cadena JM.Delgado S.Granell J.Muller G.Ordinas JI.Bardia MF.Solans X. Chem. Eur. J. 2002, 8: 2279 -
14c
Englert U.Haerter R.Vasen D.Salzer A.Eggeling EB.Vogt D. Organometallics 1999, 18: 4390 -
15a
Ceder R.Muller G.Ordinas JI. J. Mol. Catal. 1994, 92: 127 -
15b
Muller G.Ordinas JI. J. Mol. Catal. A: Chem. 1997, 125: 97 -
16a
Monteiro AL.Seferin M.Dupont J.Souza RF. Tetrahedron Lett. 1996, 37: 1157 -
16b
Fassina V.Ramminger C.Seferin M.Monteiro AL. Tetrahedron 2000, 56: 7403 -
17a
Yi CS.He Z.Lee DW. Organometallics 2001, 20: 802 -
17b
RajanBabu TV.Nomura N.Jin J.Nandi M.Park H.Sun X. J. Org. Chem. 2003, 68: 8431 - These results have since been confirmed in another more recent publication, see:
-
17c
Sanchez RP.Connell BT. Organometallics 2008, 27: 2902 -
18a
Grutters MMP.Müller C.Vogt D. J. Am. Chem. Soc. 2006, 128: 7414 - For a related reaction, see:
-
18b
Hilt G.Lüers S. Synthesis 2002, 609 - 19
Wilke G,Monkiewicz J, andKuhn H. inventors; US Patent 4912274. ; Chem. Abstr. 1991, 114, 43172 - Use of the Wilke catalyst system in supercritical carbon dioxide has since been reported, see:
-
20a
Wegner A.Leitner W. Chem. Commun. 1999, 1583 -
20b
Bösmann A.Franciò G.Janssen E.Solinas M.Leitner W.Wasserscheid P. Angew. Chem. Int. Ed. 2001, 40: 2697 - 21
Angermund K.Eckerle A.Lutz F. Z. Naturforsch., B 1995, 50: 488 - 22
Nomura N.Jin J.Park H.RajanBabu TV. J. Am. Chem. Soc. 1998, 120: 459 - 23
Müller U.Keim W.Krüger C.Betz P. Angew. Chem. Int. Ed. 1989, 28: 1011 - 24 We thank Professor Brookhart and
Dr. DiRenzo for a copy of the following dissertation: Mechanistic Studies of Catalytic Olefin Dimerization
Reactions Using Electrophilic η3-allyl-Palladium(II) Complexes:
DiRenzo GM. Ph.D. Thesis University of North Carolina; USA: 1997. - 25
Brandes H.Goddard R.Jolly PW.Krüger C.Mynott R.Wilke G. Z. Naturforsch. B 1984, 39: 1139 - 26
Barnett BL.Krüger C. J. Organomet. Chem. 1974, 77: 407 - 27
Jin J.RajanBabu TV. Tetrahedron 2000, 56: 2145 -
28a
Kumareswaran R.Nandi N.RajanBabu TV. Org. Lett. 2003, 5: 4345 -
28b
Park H.Kumareswaran R.RajanBabu TV. Tetrahedron Symposia-in-Print 2005, 61: 6352 - 29
Buono G.Siv C.Peiffer G.Triantaphylides C.Denis P.Mortreux A.Petit F. J. Org. Chem. 1985, 50: 1781 - 30
Nandi M.Jin J.RajanBabu TV. J. Am. Chem. Soc. 1999, 121: 9899 - For a discussion of hemilabile ligands, see:
-
31a
Jeffrey JC.Rauchfuss TB. Inorg. Chem. 1979, 18: 2658 -
31b
Bader A.Lindner E. Coord. Chem. Rev. 1991, 108: 27 -
31c
Slone CS.Weinberger DA.Mirkin CA. In Progress in Inorganic Chemistry Vol. 48:Karlin KD. Wiley; New York: 1999. p.233-350 -
32a
Mecking S.Keim W. Organometallics 1996, 15: 2650 -
32b
Keim W. Angew. Chem., Int. Ed. Engl. 1990, 29: 235 -
32c
Bonnet MC.Dahan F.Ecke A.Keim W.Schulz RP.Tkatchenko I. J. Chem. Soc., Chem. Commun. 1994, 615 -
32d
Keim W.Maas H.Mecking S. Z. Naturforsch., B 1995, 50: 430 -
32e
See also ref. 12a
-
32f
See also ref. 12b
- 33
Uozumi Y.Tanahashi A.Lee S.-Y.Hayashi T. J. Org. Chem. 1993, 58: 1945 -
35a
Nishida H.Takada N.Yoshimura M.Sonoda T.Kobayashi H. Bull. Chem. Soc. Jpn. 1984, 57: 2600 -
35b
Brookhart M.Grant B.Volpe A. Organometallics 1992, 11: 3920 - For the use of BARF- in related reactions, see:
-
35c
DiRenzo GM.White PS.Brookhart M. J. Am. Chem. Soc. 1996, 118: 6225 - 36
Braunstein P.Chauvin Y.Nähring J.DeCian A.Fischer J.Tiripicchio A.Ugozzoli F. Organometallics 1996, 15: 5551 - 37
Saha B.RajanBabu TV. J. Org. Chem. 2007, 72: 2357 - Examination of electronic effects has become common practice in asymmetric catalysis. For some early examples of the electronic tuning of asymmetric catalysts, see:
-
38a
Inoguchi K.Sakuraba S.Achiwa K. Synlett 1992, 169 -
38b
Jacobsen EN.Zhang W.Guler ML. J. Am. Chem. Soc. 1991, 113: 6703 -
38c
RajanBabu TV.Casalnuovo AL. J. Am. Chem. Soc. 1992, 114: 6265 -
38d
RajanBabu TV.Ayers TA.Casalnuovo AL. J. Am. Chem. Soc. 1994, 116: 4101 -
38e
Schnyder A.Hintermann L.Togni A. Angew. Chem., Int. Ed. Engl. 1995, 34: 931 - For other examples from our work, see:
-
38f
Casalnuovo AL.RajanBabu TV.Ayers TA.Warren TH. J. Am. Chem. Soc. 1994, 116: 9869 -
38g
RajanBabu TV.Casalnuovo AL. J. Am. Chem. Soc. 1996, 118: 6325 -
38h
RajanBabu TV.Ayers TA.Halliday GA.You KK.Calabrese JC. J. Org. Chem. 1997, 62: 6012 -
38i
RajanBabu TV.Radetich B.You KK.Ayers TA.Casalnuovo AL.Calabrese JC. J. Org. Chem. 1999, 64: 3429 -
38j
Clyne DS.Mermet-Bouvier YC.Nomura N.RajanBabu TV. J. Org. Chem. 1999, 64: 7601 -
38k
Yan Y.RajanBabu TV. Org. Lett. 2000, 2: 4137 - 39
Komon ZJA.Bu X.Bazan GC. J. Am. Chem. Soc. 2000, 122: 1830 - 40
Zhang A.RajanBabu TV. Org. Lett. 2004, 6: 1515 - 41
Park H.RajanBabu TV. J. Am. Chem. Soc. 2002, 124: 734 - 43
Feringa BL. Acc. Chem. Res. 2000, 33: 346 - 44
Arnold LA.Imbos R.Mandoli A.de Vries AHM.Naasz R.Feringa BL. Tetrahedron 2000, 56: 2865 - For representative examples of the use of finely tuned phosphoramidites from various research groups, see:
-
45a
Alexakis A.Polet D.Rosset S.March S. J. Org. Chem. 2004, 69: 5660 -
45b
Bernsmann H.van den Berg M.Hoen R.Minnaard AJ.Mehler G.Reetz MT.De Vries JG.Feringa BL. J. Org. Chem. 2005, 70: 943 -
45c
Streiff S.Welter C.Schelwies M.Lipowsky G.Miller N.Helmchen G. Chem. Commun. 2005, 2957 -
45d
Leitner A.Shekhar S.Pouy MJ.Hartwig JF. J. Am. Chem. Soc. 2005, 127: 15506 -
45e
Yu RT.Rovis T. J. Am. Chem. Soc. 2006, 128: 12370 -
45f
Du H.Yuan W.Zhao B.Shi Y. J. Am. Chem. Soc. 2007, 129: 11688 -
46a
Franció G.Faraone F.Leitner W. J. Am. Chem. Soc. 2002, 124: 736 - For a computational study of the phosphoramidite ligand system, see:
-
46b
Hölscher M.Franció G.Leitner W. Organometallics 2004, 23: 5606 -
47a
Smith CR.RajanBabu TV. Org. Lett. 2008, 10: 1657 - For a scalable procedure for the synthesis of phosphoramidites, see:
-
47b
Smith CR.Mans DJ.RajanBabu TV. Org. Synth. 2008, 85: 238 - For reviews and a history of the problem, see:
-
50a
Douglas CJ.Overman LE. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5363 ; and references cited therein -
50b
Denissova I.Barriault L. Tetrahedron 2003, 59: 10105 -
50c
Corey EJ.Guzman-Perez A. Angew. Chem. Int. Ed. 1998, 37: 388 -
50d
Romo D.Meyers AI. Tetrahedron 1991, 47: 9503 -
50e
Martin SF. Tetrahedron 1980, 36: 419 - 51
Takemoto T.Sodeoka M.Sasai H.Shibasaki M. J. Am. Chem. Soc. 1993, 115: 8477 ; corrigendum: J. Am. Chem. Soc. 1994, 116, 11207 - 52 For a leading reference, see:
Edwards DJ.Gerwick WH. J. Am. Chem. Soc. 2004, 126: 11432 - 53
Huang A.Kodanko JJ.Overman LE. J. Am. Chem. Soc. 2004, 126: 14043 - 54
Denmark SE.Fu J. Org. Lett. 2002, 4: 1951 -
55a
Zhang A.RajanBabu TV. J. Am. Chem. Soc. 2006, 128: 5620 - For the use of another phosphoramidite, see:
-
55b
Shi W.-J.Zhang Q.Xie J.-H.Zhu S.-F.Hou G.-H.Zhou Q.-L. J. Am. Chem. Soc. 2006, 128: 2780 -
56a
Zhang A.RajanBabu TV. J. Am. Chem. Soc. 2006, 128: 54 -
56b
Dan Mans in our group has since completed the synthesis of a number of pseudopterosin aglycones by applying back-to-back enantioselective hydrovinylations of vinylarenes and dienes. This work will be reported in due course.
- 57 For a detailed procedure of this
and other related hydrovinylation reactions, see:
Smith CR.Zhang A.Mans DJ.RajanBabu TV. Org. Synth. 2008, 85: 248 -
58a
Hulme AN.Henry SS.Meyers AI. J. Org. Chem. 1995, 60: 1265 -
58b
Fadel A.Arzel P. Tetrahedron: Asymmetry 1997, 8: 371 - For an early example (non-asymmetric) of the co-dimerization of ethylene and dienes, see:
-
59a
Su ACL. Adv. Organomet. Chem. 1979, 17: 269 -
59b
Peiffer G.Cochet X.Petit F. Bull. Soc. Chim. Fr. II 1979, 415 - 60
He Z.Yi CS.Donaldson WA. Org. Lett. 2003, 5: 1567 - 61
He Z.Yi CS.Donaldson WA. Synlett 2004, 1312 - Apart from Diels-Alder reactions, the asymmetric catalyzed carbon-carbon bond-forming reactions of acyclic 1,3-dienes give only moderate regio- and enantioselectivities. See the following examples. Cyclopropanation:
-
62a
Doyle M. In Catalytic Asymmetric SynthesisOjima I. Wiley-VCH; New York: 2000. p.191-228 - Ene reaction:
-
62b
Terada M.Mikami K. J. Chem. Soc., Chem. Commun. 1995, 2391 - Hydroformylation:
-
62c
Horiuchi T.Ohta T.Shirakawa E.Nozaki K.Takaya H. Tetrahedron 1997, 53: 7795 - Hydrocyanation:
-
62d
Saha B.RajanBabu TV. Org. Lett. 2006, 8: 4657 - 64
Hodgson M.Parker D.Taylor RJ.Ferguson G. Organometallics 1988, 7: 1761 - See the following for the best asymmetric routes to date [no useful catalytic asymmetric methods are known for other (S)-2-arylpropionic acid precursors]. Naproxen via Ru-catalyzed asymmetric hydrogenation of 2-arylacrylic acids (98% ee):
-
66a
Ohta T.Takaya H.Kitamura M.Nagai K.Noyori R. J. Org. Chem. 1987, 52: 3174 - Ni-catalyzed asymmetric hydrocyanation (95% ee):
-
66b
See also ref. 38g; and references cited therein. Ibuprofen via Ru-catalyzed hydrogenation (97% ee):
-
66c
Uemura T.Zhang X.Matsumura K.Sayo N.Kumobayashi H.Ohta T.Nozaki K.Takaya H. J. Org. Chem. 1996, 61: 5510 - Rh-catalyzed asymmetric hydroformylation (92% ee):
-
66d
Nozaki K.Sakai N.Nanno T.Higashijima T.Mano S.Horiuchi T.Takaya H. J. Am. Chem. Soc. 1997, 119: 4413 - Hydrovinylation (91% ee):
-
66e
See ref. 40. Flurbiprofen via dynamic kinetic resolution:
-
66f
Norinder J.Bogár K.Kaupp L.Backvall J.-E. Org. Lett. 2007, 9: 5095 - For publications, see the following and references cited therein. Bisabolanes:
-
68a
Hagiwara H.Okabe T.Ono H.Kamat VP.Hoshi T.Suzuki T.Ando M. J. Chem. Soc., Perkin Trans. 1 2002, 895 -
68b
Vyvyan JR.Loitz C.Looper RE.Mattingly CS.Peterson EA.Staben ST. J. Org. Chem. 2004, 69: 2461 - Heliannanes:
-
68c
Kishuku H.Shindo M.Shishido K. Chem. Commun. 2003, 350 - Pseudopterosins:
-
68d
Look SA.Fenical W.Jacobs RS.Clardy J. Proc. Natl. Acad. Sci. U.S.A. 1986, 83: 6238 -
68e
Johnson TW.Corey EJ. J. Am. Chem. Soc. 2003, 125: 13486 -
68f
Harrowven DC.Tyte MJ. Tetrahedron Lett. 2004, 45: 2089 - Serrulatanes:
-
68g
Rodriguez A.Ramirez C. J. Nat. Prod. 2001, 64: 100 -
68h
Dehmel F.Lex J.Schmalz H.-G. Org. Lett. 2002, 4: 3915 - 70
Hagiwara H.Okabe T.Ono H.Kamat VP.Hoshi T.Suzuki T.Ando M. J. Chem. Soc., Perkin Trans. 1 2002, 895 - 71
Zhang A.RajanBabu TV. Org. Lett. 2004, 6: 3159 - For a leading reference and discussion and citations of earlier work, see:
-
72a
Guevel A.-C.Hart DJ. J. Org. Chem. 1996, 61: 465 ; and references cited therein - For a pedagogical view of this problem and a historical account of the syntheses of erythro- and threo-juvabiones, see:
-
72b
Carey FA.Sundberg RJ. Advanced Organic Chemistry 2nd ed., Vol. 2: Kluwer; New York: 2001. p.848-859 -
72c
Trost BM.Verhoeven TR. J. Am. Chem. Soc. 1976, 98: 630 -
72d
Snider BB. Acc. Chem. Res. 1980, 13: 426 -
72e
Snider BB.Deutsch EA. J. Org. Chem. 1983, 48: 1823 -
72f
Wulkovich PM.Barcelos A.Sereno JF.Baggiolini EG.Hennesey BM.Uskokovic MR. Tetrahedron 1984, 40: 2283 -
72g
Andersen NH.Hadley SW.Kelly JD.Bacon ER. J. Org. Chem. 1985, 50: 4144 -
72h
Mikami K.Kawamoto K.Nakai T. Tetrahedron Lett. 1985, 26: 5799 -
72i
Mikami K.Loh T.-P.Nakai T. J. Chem. Soc., Chem. Commun. 1988, 1430 -
72j
Houston TA.Tonaka Y.Koreeda M. J. Org. Chem. 1993, 58: 4287 - For recent references dealing with the side chain of the anticancer natural product OSW-1, see:
-
72k
Yu W.Jin Z. J. Am. Chem. Soc. 2002, 124: 6576 -
73a
Honzawa S.Suhara Y.Nihei K.Saito N.Kishimoto S.Fujishima T.Kurihara M.Sugiura T.Waku K.Takayama H.Kittaka A. Bioorg. Med. Chem. Lett. 2003, 13: 3503 ; and references cited therein - For leading references, see:
-
73b
Kabat MM.Garofalo LM.Daniewski AJ.Hutchings SD.Liu W.Okabe M.Radinov R.Zhou Y. J. Org. Chem. 2001, 66: 6141 -
74a
Fujishima T.Konno K.Nakagawa K.Kurobe M.Okano T.Takayama H. Bioorg. Med. Chem. 2000, 8: 123 -
74b
Fernández B.Martinez Pérez JA.Granja JR.Castedo L.Mourino A. J. Org. Chem. 1992, 57: 3173 - See also:
-
74c
Fernández C.Gómez G.Lago C.Momán E.Fall Y. Synlett 2005, 2163 -
74d
Hijikuro I.Doi T.Takahashi T. J. Am. Chem. Soc. 2001, 123: 3716 - For a review of vitamin D chemistry, see:
-
74e
Dai H.Posner GH. Synthesis 1994, 1383 -
74f
Posner GH.Lee JK.White MC.Hutchings RH.Dai H.Kachinski JL.Dolan P.Kensler TW. J. Org. Chem. 1997, 62: 3299 - 75
Saha B.Smith CR.RajanBabu TV. J. Am. Chem. Soc. 2008, 130: 9000 - 76
Trost BM. Acc. Chem. Res. 1990, 23: 34 ; and references cited therein - For the use of early transition metals, see:
-
77a
Nugent WA.Taber DF. J. Am. Chem. Soc. 1989, 111: 6435 -
77b
Piers WE.Shapiro PJ.Bunel EE.Bercaw JE. Synlett 1990, 74 -
77c
Knight KS.Waymouth RM. J. Am. Chem. Soc. 1991, 113: 6268 -
77d
Molander GA.Hoberg JO. J. Am. Chem. Soc. 1992, 114: 3123 -
77e
Negishi E.Takahashi T. Acc. Chem. Res. 1994, 27: 124 -
77f
Dzhemilev UM. Tetrahedron 1995, 51: 4333 -
77g
Christoffers J.Bergman RG. J. Am. Chem. Soc. 1996, 118: 4715 -
77h
Thiele S.Erker G. Chem. Ber./Recl. 1997, 130: 201 -
77i
Yamaura Y.Hyakutake M.Mori M. J. Am. Chem. Soc. 1997, 119: 7615 ; and references cited therein -
78a
Bright A.Malone JF.Nicholson JK.Powell J.Shaw BL. J. Chem. Soc., Chem. Commun. 1971, 712 -
78b
See also ref. 1b
-
78c
Grigg R.Malone JF.Mitchell TRB.Ramasubbu A.Scott RM. J. Chem. Soc., Perkin Trans. 1 1984, 1745 -
78d
Behr A.Freudenberg U.Keim W. J. Mol. Catal. 1986, 35: 9 - 79
Radetich B.RajanBabu TV. J. Am. Chem. Soc. 1998, 120: 8007 - α,ω-Diene cyclization and related reactions have since received a lot of attention. For example, see:
-
80a
Böing C.Franciò G.Leitner W. Chem. Commun. 2005, 1456 -
80b
Lloyd-Jones GC. Org. Biomol. Chem. 2003, 1: 215 -
80c
Bothe U.Rudbeck HC.Tanner D.Johannsen M. J. Chem. Soc., Perkin Trans. 1 2001, 3305 -
80d
Perch NS.Pei T.Widenhoefer RA. J. Org. Chem. 2000, 65: 3836
References
For a structurally related, unreactive neutral Pd complex, see ref. 12b.
42For a report on the use of a phosphinite ligand in a Pd-catalyzed hydrovinylation, see ref. 13.
48To the best of our knowledge, ligand 87 has not been described in the literature. For a complete list of the phosphoramidites used in this study and its corresponding supporting information, see ref. 47.
49Only naproxen is currently sold in an enantiomerically pure form. For a review of the practical aspects of the synthesis of 2-arylpropionic acids, see ref. 5a.
63For an extensive list of related references, see ref. 56.
65For reviews of the synthesis of 2-arylpropionic acids, see ref. 5.
67Smith, C. R.; RajanBabu, T. V. J. Org. Chem. 2009, 74, in press.
69For a comparison of the various methods for the synthesis of curcumene, see ref. 71.