Subscribe to RSS
DOI: 10.1055/s-0028-1088203
Thieme Chemistry Journal Awardees - Where are They Now? Phosphine- and Water-Cocatalyzed [3+2] Cycloaddition Reactions of 2-Methyl-2,3-butadienoate with Fumarates: A Computational and Experimental Study
Publication History
Publication Date:
16 March 2009 (online)
Abstract
With the aid of computation and experiment, the phosphine- and water-cocatalyzed [3+2] cycloaddition reactions of 2-methyl-2,3-butadienoate with fumarates have been developed. In this reaction, 2-methyl-2,3-butadienoate is used as a three-carbon synthon generated through a water-catalyzed [1,4]-proton-shift process. The DFT calculations and isotopic labeling experiment have been done to explore how this [3+2] reaction occurs.
Key words
phosphine - water - organocatalysis - density functional calculations - reaction mechanisms
-
1a
Zhang C.Lu X. J. Org. Chem. 1995, 60: 2906 -
1b
Xu Z.Lu X. Tetrahedron Lett. 1997, 38: 3461 -
1c
Xu Z.Lu X. J. Org. Chem. 1998, 63: 5031 -
1d
Xu Z.Lu X. Tetrahedron Lett. 1999, 40: 549 - For reviews on phosphine-catalyzed reactions, see:
-
2a
Lu X.Zhang C.Xu Z. Acc. Chem. Res. 2001, 34: 535 -
2b
Methot JL.Roush WR. Adv. Synth. Catal. 2004, 346: 1035 -
2c
Lu X.Du Y.Lu C. Pure Appl. Chem. 2005, 77: 1985 -
2d
Ye L.-W.Zhou J.Tang Y. Chem. Soc. Rev. 2008, 37: 1140 - Further elegant developments and extensions of the chemistry based on phosphine organocatalysis have been reported by many other groups. For selected recent examples, see:
-
3a
Kamijo S.Kanazawa C.Yamamoto Y. J. Am. Chem. Soc. 2005, 127: 9260 -
3b
Zhu X.-F.Henry CE.Wang J.Dudding T.Kwon O. Org. Lett. 2005, 7: 1387 -
3c
Du Y.Feng J.Lu X. Org. Lett. 2005, 7: 1987 -
3d
Zhu X.-F.Schaffner A.-P.Li RC.Kwon O. Org. Lett. 2005, 7: 2977 -
3e
Tran YS.Kwon O. Org. Lett. 2005, 7: 4289 -
3f
Pham TQ.Pyne SG.Skelton BW.White AH. J. Org. Chem. 2005, 70: 6369 -
3g
Wilson JE.Fu GC. Angew. Chem. Int. Ed. 2006, 45: 1426 -
3h
Nair V.Biju AT.Mohanan K.Suresh E. Org. Lett. 2006, 8: 2213 -
3i
Dudding T.Kwon O.Mercier E. Org. Lett. 2006, 8: 3643 -
3j
Castellano S.Fiji HDG.Kinderman SS.Watanabe M.de Leon P.Tamanoi F.Kwon O. J. Am. Chem. Soc. 2007, 129: 5843 -
3k
Zhu X.-F.Henry CE.Kwon O. J. Am. Chem. Soc. 2007, 129: 6722 -
3l
Cowen BJ.Miller SJ. J. Am. Chem. Soc. 2007, 129: 10988 -
3m
Ye L.-W.Sun X.-L.Wang Q.-G.Tang Y. Angew. Chem. Int. Ed. 2007, 46: 5951 -
3n
Henry CE.Kwon O. Org. Lett. 2007, 9: 3069 -
3o
Wallace DJ.Sidda RL.Reamer RA. J. Org. Chem. 2007, 72: 1051 -
3p
Fang Y.-Q.Jacobsen EN. J. Am. Chem. Soc. 2008, 130: 5660 -
3q
Creech GS.Zhu X.-F.Fonovic B.Dudding T.Kwon O. Tetrahedron 2008, 64: 6935 -
3r
Panossian A.Fleury-Bregeot N.Marinetti A. Eur. J. Org. Chem. 2008, 3826 -
4a
Xia Y.Liang Y.Chen Y.Wang M.Jiao L.Huang F.Liu S.Li Y.Yu Z.-X. J. Am. Chem. Soc. 2007, 129: 3470 -
4b
Liang Y.Liu S.Xia Y.Li Y.Yu Z.-X. Chem. Eur. J. 2008, 14: 4361 - Selected examples for 2-methylallenoate used as a two-carbon synthon, see:
-
6a
Padwa A.Matzinger M.Tomioka Y.Venkatramanan MK. J. Org. Chem. 1988, 53: 955 -
6b
Kumar K.Kapur A.Ishar MPS. Org. Lett. 2000, 2: 787 -
6c
Ishar MPS.Kapur A.Raj T.Girdhar NK.Kaur A. Synthesis 2004, 775 -
6d
Jung ME.Nishimura N.Novack AR. J. Am. Chem. Soc. 2005, 127: 11206 -
6e
Zhao G.-L.Shi Y.-L.Shi M. Org. Lett. 2005, 7: 4527 - Examples for 2-methylallenoate used as a four-carbon synthon, see:
-
7a
Zhu X.-F.Lan J.Kwon O. J. Am. Chem. Soc. 2003, 125: 4716 -
7b
Wurz RP.Fu GC. J. Am. Chem. Soc. 2005, 127: 12234 -
7c
Tran YS.Kwon O. J. Am. Chem. Soc. 2007, 129: 12632 - 8
Frisch MJ.Trucks GW.Schlegel HB.Scuseria GE.Robb MA.Cheeseman JR.Montgomery JA.Vreven T.Kudin KN.Burant JC.Millam JM.Iyengar SS.Tomasi J.Barone V.Mennucci B.Cossi M.Scalmani G.Rega N.Petersson GA.Nakatsuji H.Hada M.Ehara M.Toyota K.Fukuda R.Hasegawa J.Ishida M.Nakajima T.Honda Y.Kitao O.Nakai H.Klene M.Li X.Knox JE.Hratchian HP.Cross JB.Adamo C.Jaramillo J.Gomperts R.Stratmann RE.Yazyev O.Austin AJ.Cammi R.Pomelli C.Ochterski JW.Ayala PY.Morokuma K.Voth GA.Salvador P.Dannenberg JJ.Zakrzewski VG.Dapprich S.Daniels AD.Strain MC.Farkas O.Malick DK.Rabuck AD.Raghavachari K.Foresman JB.Ortiz JV.Cui Q.Baboul AG.Clifford S.Cioslowski J.Stefanov BB.Liu G.Liashenko A.Piskorz P.Komaromi I.Martin RL.Fox DJ.Keith T.Al-Laham MA.Peng CY.Nanayakkara A.Challacombe M.Gill PMW.Johnson B.Chen W.Wong MW.Gonzalez C.Pople JA. Gaussian 03 (Revision C.02) Gaussian Inc.; Wallingford CT: 2004. -
9a
Becke AD. J. Chem. Phys. 1993, 98: 5648 -
9b
Lee C.Yang W.Parr RG. Phys. Rev. B 1988, 37: 785 - 10
Hehre WJ.Radom L.Schleyer P.v.R.Pople JA. Ab Initio Molecular Orbital Theory Wiley; New York: 1986. -
11a
Barone V.Cossi M. J. Phys. Chem. A 1998, 102: 1995 -
11b
Cossi M.Rega N.Scalmani G.Barone V. J. Comput. Chem. 2003, 24: 669 -
11c
Takano Y.Houk KN. J. Chem. Theory Comput. 2005, 1: 70 - For discussions on entropy overestimation in solution, see:
-
13a
Hermans J.Wang L. J. Am. Chem. Soc. 1997, 119: 2707 -
13b
Amzel LM. Proteins 1997, 28: 144 -
13c
Strajbl M.Sham YY.Villa J.Chu Z.-T.Warshel A. J. Phys. Chem. B 2000, 104: 4578 -
13d
Yu Z.-X.Houk KN. J. Am. Chem. Soc. 2003, 125: 13825 -
13e
Chen Y.Ye S.Jiao L.Liang Y.Sinha-Mahapatra DK.Herndon JW.Yu Z.-X. J. Am. Chem. Soc. 2007, 129: 10773
References and Notes
In the revision of this paper, we repeated reaction (c) (Scheme [²] ) twice. It was found that 3-CH2D-substituted [3+2] product was generated with a ratio of 44% and 38%, respectively. The 3-Me-substituted [3+2] product was formed through the catalysis of DOH (generated in the reaction) and H2O (generated and residual water in the reaction system). Therefore, it is reasonable for the observed deuterated ratio of about 40%.
12Although the generation of zwitterion 13 is endergonic by 17.5 kcal mol-¹ in
terms of free energy in benzene, the computed enthalpy and the free
energy for the whole
[3+2] reaction
in benzene is -39.6 and -25.8 kcal mol-¹, respectively.
General Procedure
for the Ph
3
P-
and H
2
O-Cocatalyzed [3+2] Reaction
To
a mixture of the fumarate (1 mmol), Ph3P (0.5 mmol),
and H2O (1 mmol) in toluene (5 mL) was added via syringe under
nitrogen methyl 2-methylallenoate (0.5 mmol). After stirring at
90 ˚C for 12 h, the solvent was removed under reduced pressure,
and the residue was purified by flash chromatography on SiO2 to
yield the product.
trans
-Trimethyl 3-Methylcyclopent-3-ene-1,2,4-tricarboxylate
(3)
Colorless oil; R
f
= 0.27
(PE-EtOAc, 6:1). ¹H NMR (300 MHz, CDCl3): δ = 2.13
(m, 3 H), 2.90 (ddm, J = 16.5,
6.6 Hz, 1 H), 3.08 (ddm, J = 16.5,
9.6 Hz, 1 H), 3.50 (dt, J = 9.6, 6.6
Hz, 1 H), 3.72 (s, 3 H), 3.74 (s, 3 H), 3.77 (s, 3 H), 3.96 (dm, J = 6.6 Hz,
1 H). ¹³C NMR (75.5 MHz, CDCl3): δ = 14.8,
36.0, 43.4, 51.3, 52.3, 52.4, 59.1, 128.2, 149.7, 165.3, 172.3,
174.0. IR: ν = 1717, 1735 cm
-¹.
MS (EI): m/z (%) = 256
(5) [M+], 224 (63), 196 (76),
164 (100). HRMS: m/z calcd for
C12H16O6: 256.0947; found: 256.0950.
trans
-1,2-Diethyl-4-methyl
3-Methylcyclopent-3-ene-1,2,4-tricarboxylate (5)
Colorless
oil; R
f
= 0.37
(PE-EtOAc, 6:1). ¹H NMR (300 MHz, CDCl3): δ = 1.27
(t, J = 7.2
Hz, 3 H), 1.30 (t, J = 7.2 Hz,
3 H), 2.14 (m, 3 H), 2.88 (ddm, J = 16.5,
6.6 Hz, 1 H), 3.08 (ddm, J = 16.5,
9.6 Hz, 1 H), 3.48 (dt, J = 9.6,
6.6 Hz, 1 H), 3.74 (s, 3 H), 3.93 (dm, J = 6.6
Hz, 1 H), 4.14-4.27 (m, 4 H). ¹³C
NMR (75.5 MHz, CDCl3): δ = 14.09, 14.15,
14.8, 35.9, 43.5, 51.2, 59.3, 61.0, 61.3, 128.1, 149.9, 165.4, 171.8, 173.6.
IR: ν = 1717, 1732
cm-¹. MS (EI): m/z (%) = 284
(6) [M+], 252 (13), 238 (53),
210 (100). HRMS: m/z calcd for C14H20O6:
284.1260; found: 284.1257.
trans
-1,2-Diallyl-4-methyl 3-Methylcyclopent-3-ene-1,2,4-tricarboxylate
(7)
Colorless oil; R
f
= 0.36
(PE-EtOAc, 6:1). ¹H NMR (300 MHz, CDCl3): δ = 2.14
(m, 3 H), 2.91 (ddm, J = 16.5,
6.6 Hz, 1 H), 3.10 (ddm, J = 16.5,
9.6 Hz, 1 H), 3.54 (dt, J = 9.6, 6.6
Hz, 1 H), 3.74 (s, 3 H), 3.99 (dm, J = 6.6
Hz, 1 H), 4.60-4.67 (m, 4 H), 5.23-5.39 (m, 4
H), 5.85-6.00 (m, 2 H). ¹³C NMR
(75.5 MHz, CDCl3): δ = 14.8, 35.9,
43.5, 51.3, 59.2, 65.6, 65.9, 118.4, 118.8, 128.2, 131.5, 131.7,
149.7, 165.3, 171.4, 173.2. IR: ν = 1717,
1733 cm-¹. MS (EI): m/z (%) = 308
(3) [M+], 276 (5), 250 (20),
222 (18), 41 (100). HRMS: m/z calcd
for C16H20O6: 308.1260; found:
308.1252.