Synlett 2009(6): 905-909  
DOI: 10.1055/s-0028-1088203
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Thieme Chemistry Journal Awardees - Where are They Now? Phosphine- and Water-Cocatalyzed [3+2] Cycloaddition Reactions of 2-Methyl-2,3-butadienoate with Fumarates: A Computational and Experimental Study

Yong Liang, Song Liu, Zhi-Xiang Yu*
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. of China
Fax: +86(10)62751708; e-Mail: yuzx@pku.edu.cn;
Further Information

Publication History

Received 3 October 2008
Publication Date:
16 March 2009 (online)

Abstract

With the aid of computation and experiment, the phosphine- and water-cocatalyzed [3+2] cycloaddition reactions of 2-methyl-2,3-butadienoate with fumarates have been developed. In this reaction, 2-methyl-2,3-butadienoate is used as a three-carbon synthon generated through a water-catalyzed [1,4]-proton-shift process. The DFT calculations and isotopic labeling experiment have been done to explore how this [3+2] reaction occurs.

    References and Notes

  • 1a Zhang C. Lu X. J. Org. Chem.  1995,  60:  2906 
  • 1b Xu Z. Lu X. Tetrahedron Lett.  1997,  38:  3461 
  • 1c Xu Z. Lu X. J. Org. Chem.  1998,  63:  5031 
  • 1d Xu Z. Lu X. Tetrahedron Lett.  1999,  40:  549 
  • For reviews on phosphine-catalyzed reactions, see:
  • 2a Lu X. Zhang C. Xu Z. Acc. Chem. Res.  2001,  34:  535 
  • 2b Methot JL. Roush WR. Adv. Synth. Catal.  2004,  346:  1035 
  • 2c Lu X. Du Y. Lu C. Pure Appl. Chem.  2005,  77:  1985 
  • 2d Ye L.-W. Zhou J. Tang Y. Chem. Soc. Rev.  2008,  37:  1140 
  • Further elegant developments and extensions of the chemistry based on phosphine organocatalysis have been reported by many other groups. For selected recent examples, see:
  • 3a Kamijo S. Kanazawa C. Yamamoto Y. J. Am. Chem. Soc.  2005,  127:  9260 
  • 3b Zhu X.-F. Henry CE. Wang J. Dudding T. Kwon O. Org. Lett.  2005,  7:  1387 
  • 3c Du Y. Feng J. Lu X. Org. Lett.  2005,  7:  1987 
  • 3d Zhu X.-F. Schaffner A.-P. Li RC. Kwon O. Org. Lett.  2005,  7:  2977 
  • 3e Tran YS. Kwon O. Org. Lett.  2005,  7:  4289 
  • 3f Pham TQ. Pyne SG. Skelton BW. White AH. J. Org. Chem.  2005,  70:  6369 
  • 3g Wilson JE. Fu GC. Angew. Chem. Int. Ed.  2006,  45:  1426 
  • 3h Nair V. Biju AT. Mohanan K. Suresh E. Org. Lett.  2006,  8:  2213 
  • 3i Dudding T. Kwon O. Mercier E. Org. Lett.  2006,  8:  3643 
  • 3j Castellano S. Fiji HDG. Kinderman SS. Watanabe M. de Leon P. Tamanoi F. Kwon O. J. Am. Chem. Soc.  2007,  129:  5843 
  • 3k Zhu X.-F. Henry CE. Kwon O. J. Am. Chem. Soc.  2007,  129:  6722 
  • 3l Cowen BJ. Miller SJ. J. Am. Chem. Soc.  2007,  129:  10988 
  • 3m Ye L.-W. Sun X.-L. Wang Q.-G. Tang Y. Angew. Chem. Int. Ed.  2007,  46:  5951 
  • 3n Henry CE. Kwon O. Org. Lett.  2007,  9:  3069 
  • 3o Wallace DJ. Sidda RL. Reamer RA. J. Org. Chem.  2007,  72:  1051 
  • 3p Fang Y.-Q. Jacobsen EN. J. Am. Chem. Soc.  2008,  130:  5660 
  • 3q Creech GS. Zhu X.-F. Fonovic B. Dudding T. Kwon O. Tetrahedron  2008,  64:  6935 
  • 3r Panossian A. Fleury-Bregeot N. Marinetti A. Eur. J. Org. Chem.  2008,  3826 
  • 4a Xia Y. Liang Y. Chen Y. Wang M. Jiao L. Huang F. Liu S. Li Y. Yu Z.-X. J. Am. Chem. Soc.  2007,  129:  3470 
  • 4b Liang Y. Liu S. Xia Y. Li Y. Yu Z.-X. Chem. Eur. J.  2008,  14:  4361 
  • Selected examples for 2-methylallenoate used as a two-carbon synthon, see:
  • 6a Padwa A. Matzinger M. Tomioka Y. Venkatramanan MK. J. Org. Chem.  1988,  53:  955 
  • 6b Kumar K. Kapur A. Ishar MPS. Org. Lett.  2000,  2:  787 
  • 6c Ishar MPS. Kapur A. Raj T. Girdhar NK. Kaur A. Synthesis  2004,  775 
  • 6d Jung ME. Nishimura N. Novack AR. J. Am. Chem. Soc.  2005,  127:  11206 
  • 6e Zhao G.-L. Shi Y.-L. Shi M. Org. Lett.  2005,  7:  4527 
  • Examples for 2-methylallenoate used as a four-carbon synthon, see:
  • 7a Zhu X.-F. Lan J. Kwon O. J. Am. Chem. Soc.  2003,  125:  4716 
  • 7b Wurz RP. Fu GC. J. Am. Chem. Soc.  2005,  127:  12234 
  • 7c Tran YS. Kwon O. J. Am. Chem. Soc.  2007,  129:  12632 
  • 8 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Montgomery JA. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian 03 (Revision C.02)   Gaussian Inc.; Wallingford CT: 2004. 
  • 9a Becke AD. J. Chem. Phys.  1993,  98:  5648 
  • 9b Lee C. Yang W. Parr RG. Phys. Rev. B  1988,  37:  785 
  • 10 Hehre WJ. Radom L. Schleyer P.v.R. Pople JA. Ab Initio Molecular Orbital Theory   Wiley; New York: 1986. 
  • 11a Barone V. Cossi M. J. Phys. Chem. A  1998,  102:  1995 
  • 11b Cossi M. Rega N. Scalmani G. Barone V. J. Comput. Chem.  2003,  24:  669 
  • 11c Takano Y. Houk KN. J. Chem. Theory Comput.  2005,  1:  70 
  • For discussions on entropy overestimation in solution, see:
  • 13a Hermans J. Wang L. J. Am. Chem. Soc.  1997,  119:  2707 
  • 13b Amzel LM. Proteins  1997,  28:  144 
  • 13c Strajbl M. Sham YY. Villa J. Chu Z.-T. Warshel A. J. Phys. Chem. B  2000,  104:  4578 
  • 13d Yu Z.-X. Houk KN. J. Am. Chem. Soc.  2003,  125:  13825 
  • 13e Chen Y. Ye S. Jiao L. Liang Y. Sinha-Mahapatra DK. Herndon JW. Yu Z.-X. J. Am. Chem. Soc.  2007,  129:  10773 
5

In the revision of this paper, we repeated reaction (c) (Scheme  [²] ) twice. It was found that 3-CH2D-substituted [3+2] product was generated with a ratio of 44% and 38%, respectively. The 3-Me-substituted [3+2] product was formed through the catalysis of DOH (generated in the reaction) and H2O (generated and residual water in the reaction system). Therefore, it is reasonable for the observed deuterated ratio of about 40%.

12

Although the generation of zwitterion 13 is endergonic by 17.5 kcal mol in terms of free energy in benzene, the computed enthalpy and the free energy for the whole
[3+2] reaction in benzene is -39.6 and -25.8 kcal mol, respectively.

14

General Procedure for the Ph 3 P- and H 2 O-Cocatalyzed [3+2] Reaction
To a mixture of the fumarate (1 mmol), Ph3P (0.5 mmol), and H2O (1 mmol) in toluene (5 mL) was added via syringe under nitrogen methyl 2-methylallenoate (0.5 mmol). After stirring at 90 ˚C for 12 h, the solvent was removed under reduced pressure, and the residue was purified by flash chromatography on SiO2 to yield the product.
trans -Trimethyl 3-Methylcyclopent-3-ene-1,2,4-tricarboxylate (3)
Colorless oil; R f  = 0.27 (PE-EtOAc, 6:1). ¹H NMR (300 MHz, CDCl3): δ = 2.13 (m, 3 H), 2.90 (ddm, J = 16.5, 6.6 Hz, 1 H), 3.08 (ddm, J = 16.5, 9.6 Hz, 1 H), 3.50 (dt, J = 9.6, 6.6 Hz, 1 H), 3.72 (s, 3 H), 3.74 (s, 3 H), 3.77 (s, 3 H), 3.96 (dm, J = 6.6 Hz, 1 H). ¹³C NMR (75.5 MHz, CDCl3): δ = 14.8, 36.0, 43.4, 51.3, 52.3, 52.4, 59.1, 128.2, 149.7, 165.3, 172.3, 174.0. IR: ν = 1717, 1735 cm . MS (EI): m/z (%) = 256 (5) [M+], 224 (63), 196 (76), 164 (100). HRMS: m/z calcd for C12H16O6: 256.0947; found: 256.0950.
trans -1,2-Diethyl-4-methyl 3-Methylcyclopent-3-ene-1,2,4-tricarboxylate (5)
Colorless oil; R f  = 0.37 (PE-EtOAc, 6:1). ¹H NMR (300 MHz, CDCl3): δ = 1.27 (t, J = 7.2 Hz, 3 H), 1.30 (t, J = 7.2 Hz, 3 H), 2.14 (m, 3 H), 2.88 (ddm, J = 16.5, 6.6 Hz, 1 H), 3.08 (ddm, J = 16.5, 9.6 Hz, 1 H), 3.48 (dt, J = 9.6, 6.6 Hz, 1 H), 3.74 (s, 3 H), 3.93 (dm, J = 6.6 Hz, 1 H), 4.14-4.27 (m, 4 H). ¹³C NMR (75.5 MHz, CDCl3): δ = 14.09, 14.15, 14.8, 35.9, 43.5, 51.2, 59.3, 61.0, 61.3, 128.1, 149.9, 165.4, 171.8, 173.6. IR: ν = 1717, 1732 cm. MS (EI): m/z (%) = 284 (6) [M+], 252 (13), 238 (53), 210 (100). HRMS: m/z calcd for C14H20O6: 284.1260; found: 284.1257.
trans -1,2-Diallyl-4-methyl 3-Methylcyclopent-3-ene-1,2,4-tricarboxylate (7)
Colorless oil; R f  = 0.36 (PE-EtOAc, 6:1). ¹H NMR (300 MHz, CDCl3): δ = 2.14 (m, 3 H), 2.91 (ddm, J = 16.5, 6.6 Hz, 1 H), 3.10 (ddm, J = 16.5, 9.6 Hz, 1 H), 3.54 (dt, J = 9.6, 6.6 Hz, 1 H), 3.74 (s, 3 H), 3.99 (dm, J = 6.6 Hz, 1 H), 4.60-4.67 (m, 4 H), 5.23-5.39 (m, 4 H), 5.85-6.00 (m, 2 H). ¹³C NMR (75.5 MHz, CDCl3): δ = 14.8, 35.9, 43.5, 51.3, 59.2, 65.6, 65.9, 118.4, 118.8, 128.2, 131.5, 131.7, 149.7, 165.3, 171.4, 173.2. IR: ν = 1717, 1733 cm. MS (EI): m/z (%) = 308 (3) [M+], 276 (5), 250 (20), 222 (18), 41 (100). HRMS: m/z calcd for C16H20O6: 308.1260; found: 308.1252.