Subscribe to RSS
DOI: 10.1055/s-0028-1087920
Oxidation of Biginelli Reaction Products: Synthesis of 2-Unsubstituted 1,4-Dihydropyrimidines, Pyrimidines, and 2-Hydroxypyrimidines
Publication History
Publication Date:
16 February 2009 (online)
Abstract
We have devised a new route toward 2-unsubstituted pyrimidine derivatives from the Biginelli product, dihydropyrimidin-2(1H)-thiones in two steps: Oxidation of dihydropyrimidin-2(1H)-thiones using oxone on wet alumina or hydrogen peroxide in the presence of catalytic amount of vanadyl sulfate provided 1,4-dihydropyrimidine, which was further oxidized to 2-unsubstituted pyrimidines by the treatment of KMnO4. Oxidation of dihydropyrimidin-2(1H)-ones by KMnO4 formed 2-hydroxypyrimidine in excellent yield, whereas attempted direct desulfurative aromatization of dihydropyrimidin-2(1H)-thiones by KMnO4 resulted in the formation of 2-hydroxypyrimidines, the same products obtained in the oxidation of dihydropyrimidin-2(1H)-one.
Key words
Biginelli reaction - desulfurative oxidation - 2-unsubstituted pyrimidine - 1,4-dihydropyrimidine - 2-hydroxypyrimidine
- 1
Kappe CO. Eur. J. Med. Chem. 2000, 35: 1043 - 2
Ranu BC.Hajra A.Jana U. J. Org. Chem. 2000, 65: 6270 - 3
Fu NY.Yuan YF.Cao Z.Wang SW.Wang JT.Peppe C. Tetrahedron 2002, 58: 4801 - 4
Bose DS.Fatima L.Mereyala HB. J. Org. Chem. 2003, 68: 587 - 5
Ramalinga K.Vijayalakshmi P.Kaimala TNB. Synlett 2001, 863 - 6
Rafiee E.Jafari H. Bioorg. Med. Chem. Lett. 2006, 16: 2463 - 7
Yadav JS.Reddy BVS.Srinivas R.Venugopal C.Ramalingam T. Synthesis 2001, 1341 - 8
Zhu YL.Huang SL.Pan YJ. Eur. J. Org. Chem. 2005, 2354 - 9
Sabitha G.Reddy GKK.Reddy CS.Yadav JS. Synlett 2003, 858 - 10
Lu J.Ma H. Synlett 2000, 63 - 11
Abelman MM.Smith SC.James DR. Tetrahedron Lett. 2003, 44: 4559 - 12
Lu J.Bai Y.Wang Z.Yang B.Ma H. Tetrahedron Lett. 2000, 41: 9075 - 13
Hu EH.Sidler DR.Dolling UH. J. Org. Chem. 1998, 63: 3454 - 14
Mitsushita A,Oda M,Kawachi Y, andChika J.-i. inventors; WO 03006437. - 15
Watanabe M.Koike H.Ishiba T.Okada T.Seo S.Hirai K. Bioorg. Med. Chem. 1997, 5: 437 - 16
Kappe CO.Roschger P. J. Heterocycl. Chem. 1989, 26: 1555 ; this Pd/C dehydrogenation without the use of oxidant requires rigorous conditions (210 ˚C) in Ph2O - 17
Kadis V.Strandins J.Khanina EL.Duburs G. Electrochim. Acta 1989, 34: 899 - 18
Yamamoto K.Chen YG.Buono FG. Org. Lett. 2005, 7: 4673 - 19
Karade NN.Gampawar SV.Kondre JM.Tiwari GB. Tetrahedron Lett. 2008, 49: 6698 -
20a
Kress TJ. Heterocycles 1994, 38: 1380 -
20b
Draper RW. inventors; WO 2005007608. -
20c
Palani A.Shapiro S.Clader JW.Greenlee WJ.Vice SF.McCombie S.Cox K.Stizki J.Baroudy BM. Bioorg. Med. Chem. Lett. 2003, 13: 709 -
20d
McCombie SW.Tagat JR.Vice SF.Lin S.-I.Steensma R.Palani A.Neustadt BR.Baroudy BM.Strizki JM.Enders M.Cox K.Dan N.Chou C.-C. Bioorg. Med. Chem. Lett. 2003, 13: 567 -
21a
Khanina EL.Zolotoyabko RM.Muceniece D.Duburs G. Khim. Geterotsikl. Soedin. 1989, 1076 -
21b
Kanina EL.Mucenice D.Kadysh VP.Duburs G. Khim. Geterotsikl. Soedin. 1986, 1223 ; in these references, pyrimidin-2-thione or its thioether derivative was reduced by Raney nickel to provide 1,4-dihydropyrimidine - 22
Chang JH.Lee KW.Nam DH.Kim WS.Shin H. Org. Process Res. Dev. 2002, 6: 674 - 23
Greenhalgh RP. Synlett 1992, 235 -
25a
Girke WPK. Chem. Ber. 1979, 112: 1 -
25b
de Bie DA.Nagel A.van der Plas HC.Koudijs A. Tetrahedron Lett. 1979, 649
References and Notes
General Procedure
for the Preparation of 1,4-Dihydro-pyrimidines 2a-e
To
a stirred mixture of 1a (1 g, 3.62 mmol)
and a catalytic amount of vanadium sulfate (0.0072 g, 10 mol%)
in EtOH (2.5 mL) and H2O (2.5 mL) was added dropwise
30% H2O2 (1.52 g, 13.38 mmol) over
1 h maintaining the reaction temperature at about 50 ˚C.
After 8-12 h, the mixture was cooled and volatiles were
evaporated under vacuum. The mixture was diluted with CH2Cl2 (10
mL) and washed with H2O (30 mL). The separated organic
layer was dried with MgSO4, filtered, and concentrated
to afford crude 2a. Column chromatography
with EtOAc-n-hexane gave 2a as a white solid (397 mg, 48%).
Spectroscopic Data
Compound 2a: ¹H NMR (400 MHz,
DMSO-d
6
): δ = 9.30
(s, 1 H), 7.30-7.16 (m, 5 H), 5.40 (s, 1 H), 3.97 (q, J = 4.0 Hz, 2
H), 2.22 (s, 3 H), 1.12 (t, J = 2.7
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 167.4,
145.6, 143.3, 128.9, 127.7, 127.6, 100.7, 60.2, 58.0, 19.3, 14.6.
ESI-MS: m/z = 245.3 [M + 1].
Compound 2b: ¹H NMR (400 MHz,
CDCl3): δ = 8.27
(br s, 1 H), 7.26-6.92 (m, 4 H), 5.48 (s, 1 H), 4.08 (q, J = 4.0 Hz, 2
H), 2.62 (q, J = 4.0
Hz, 2 H), 2.22 (s, 3 H), 1.26-1.15 (m, 6 H). ¹³C
NMR (100 MHz, CDCl3): δ = 167.3,
145.6, 144.4, 143.9, 142.8, 128.4, 127.5, 101.0, 60.2, 57.2, 28.9,
18.8, 15.8, 14.6. ESI-MS: m/z = 273.4 [M + 1].
Compound 2c: ¹H NMR (400 MHz,
CDCl3): δ = 10.13
(s,
1 H), 9.91 (s, 1 H), 4.83 (t, J = 4.0
Hz, 1 H), 4.26 (m, 2 H), 2.48 (s, 3 H), 1.79-1.14 (m, 11
H), 0.87 (t, J = 2.7
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 164.3,
161.1, 142.7, 107.4, 61.7, 52.5, 51.7, 47.0, 36.9, 31.6, 23.3, 22.7,
17.9, 14.6, 14.3. ESI-MS: m/z = 239.3 [M + 1].
Compound 2d: ¹H NMR (400 MHz,
CDCl3): δ = 7.43
(s,
1 H), 7.28-7.14 (m, 5 H), 4.63 (t, J = 4.0 Hz,
1 H), 4.18 (m, 2 H), 2.80-2.67 (m, 2 H), 2.28 (s, 3 H),
1.91-1.82 (m, 2 H), 1.26 (t, J = 3.3
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 175.9,
165.8, 165.7, 144.5, 141.1, 128.9, 128.7, 126.5, 103.2, 103.1, 60.8,
60.4, 52.3, 38.3, 30.9, 18.6, 14.7. ESI-MS: m/z = 271.4 [M + 1].
Compound 2e: ¹H NMR (400 MHz,
CDCl3): δ = 7.34-6.99 (m,
4 H), 5.57 (s, 1 H), 5.40 (d, J = 4.0
Hz, 1 H), 4.09 (m,
2 H), 2.31 (s, 3 H), 1.20 (t, J = 2.7 Hz,
3 H). ¹³C NMR (100 MHz, CDCl3): δ = 167.1,
162.5 (d, J = 250.0
Hz), 145.1, 142.6, 141.4, 129.2 (d, J = 10.0
Hz), 115.6 (d, J = 20.0
Hz), 115.5, 101.2, 60.3, 57.4, 19.5, 14.6. ESI-MS: m/z = 263.3 [M + 1].
General Procedure
for the Preparation of 2-Unsubsti-tuted Pyrimidines 3a-e
To
a stirred solution of 2a (100 mg, 0.41
mmol) in acetone (2 mL) was added KMnO4 (87 mg, 0.55
mmol). After the complete consumption of 2a,
excess of KMnO4 was decomposed by the addition of 2-PrOH.
The reaction mixture was filtered through Celite and washed thoroughly with
acetone (10 mL). Removal of solvent afforded product 3a (72mg,
73%) as a white solid.
Spectroscopic
Data
Compound 3a: ¹H
NMR (400 MHz, CDCl3): δ = 9.16
(s, 1 H), 7.68-7.43 (m, 5 H), 4.24 (q, J = 4.0
Hz, 2 H), 2.57 (s, 3 H), 1.10 (t, J = 2.7
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 167.4,
164.7, 162.9, 157.8, 137.2, 131.8, 131.5, 129.9, 128.3, 128.0, 125.7,
61.7, 22.3, 13.4. ESI-MS: m/z = 243.4 [M + 1].
Compound 3b: ¹H NMR(400 MHz,
CDCl3): δ = 9.13
(s, 1 H), 7.60 (d, J = 4.0
Hz, 2 H), 7.37 (d, J = 4.0
Hz, 2 H), 4.26 (q, J = 4.0
Hz, 2 H), 2.73 (q, J = 4.0
Hz, 2 H), 2.62 (s, 3 H), 1.28 (t, J = 2.7
Hz, 3 H), 1.13 (t, J = 2.7
Hz, 3H). ¹³C NMR (100 MHz, CDCl3): δ = 168.3,
165.2, 163.6, 158.4, 147.2, 135.8, 128.8, 128.6, 126.2, 62.3, 29.1,
22.9, 15.8, 14.1. ESI-MS: m/z = 271.3 [M + 1].
Compound 3c: ¹H NMR (400 MHz,
CDCl3): δ = 9.01
(s, 1 H), 4.48 (q, J = 4.0
Hz, 2 H), 2.79 (t, J = 4.0
Hz, 2 H), 2.54 (s, 3 H), 1.77-1.22 (m, 9 H), 0.92 (t, J = 2.7 Hz,
3 H). ¹³C NMR (100 MHz, CDCl3): δ = 167.8,
167.7, 164.2, 158.3, 62.2, 36.1, 31.9, 28.9, 22.9, 22.7, 14.4, 14.2.
ESI-MS:
m/z = 237.3 [M + 1].
Compound 3d: ¹H NMR (400 MHz,
CDCl3): δ = 9.02
(s, 1 H), 7.40-7.00 (m, 5 H), 4.44 (q, J = 4.0
Hz, 2 H), 3.11-3.02 (m, 4 H), 2.54 (s, 3 H), 1.40 (t, J = 3.3 Hz,
3 H). ¹³C NMR (100 MHz, CDCl3): δ = 167.6,
166.8, 164.6, 158.5, 128.9, 128.8, 127.2, 126.7, 62.4, 38.2, 35.3,
23.2, 14.6. ESI-MS:
m/z = 271.4 [M + 1].
Compound 3e: ¹H NMR (400 MHz,
CDCl3): δ = 9.14
(s, 1 H), 7.70-7.65 (m, 2 H), 7.21-7.11 (m, 2
H), 4.27 (q, J = 4.0 Hz,
2 H), 2.63 (s, 3 H), 1.18 (t, J = 2.7
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 168.1,
164.4 (d, d, J = 230.0
Hz), 164.0, 162.4, 158.5, 134.0, 131.0 (d, J = 10.0
Hz), 126.2, 116.2 (d, J = 20.0
Hz), 62.5, 23.0, 14.1. ESI-MS: m/z = 261.3 [M + 1].
General Procedure
for the Preparation of 2-Hydroxy-pyrimidines 5a-e
To
a stirred solution of 4a (1.0 g, 3.84 mmol)
in acetone (20 mL) was added KMnO4 (1.52 g, 9.60 mmol).
After the complete consumption of 4a, the
excess KMnO4 was decomposed by the addition of 2-PrOH.
The reaction mixture was filtered through Celite and washed thoroughly with
acetone (30 mL). Removal of solvent afforded product 5a (670mg,
81%) as a white solid.
Spectroscopic
Data
Compound 5a: ¹H
NMR (400 MHz, CDCl3): δ = 7.61-7.41 (m,
5 H), 4.05 (q, J = 4.0
Hz, 2 H), 2.62 (s, 3 H), 0.94 (t, J = 2.7
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 167.4, 164.7,
162.9, 157.8, 137.2, 131.8, 131.7, 131.5, 129.9, 128.3, 128.0, 125.7,
61.7, 22.3, 13.4. ESI-MS: m/z = 259.3 [M + 1].
Compound 5b: ¹H NMR (400 MHz,
CDCl3): δ = 7.52-7.13 (m,
4 H), 4.80-4.26 (m, 2 H), 3.01 (q, J = 4.0
Hz, 2 H), 2.84 (s, 1 H), 2.69-2.45 (m, 2 H), 2.30 (s, 3
H), 1.26 (t, J = 2.7
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 165.8,
141.0, 140.4, 129.0, 128.8, 128.7, 126.9, 126.8, 62.2, 38.8, 31.8,
31.0, 30.7, 30.1, 25.5, 14.6. ESI-MS: m/z = 287.3 [M + 1].
Compound 5c: ¹H NMR (400 MHz,
CDCl3): δ = 4.42
(q, J = 2.0
Hz, 2 H), 2.80 (t, J = 2.0
Hz, 2 H), 2.53 (s, 3 H), 1.73-1.26 (m, 9 H), 0.90 (t, J = 2.7 Hz,
3 H). ¹³C NMR (100 MHz, CDCl3): δ = 166.0,
158.7, 111.8, 62.1, 32.0, 31.8, 31.5, 22.8, 14.6, 14.29, 14.26.
ESI-MS: m/z = 253.3 [M + 1].
Compound 5d: ¹H NMR (400 MHz,
CDCl3): δ = 7.52-7.13 (m,
5 H), 4.80-4.26 (m, 2 H), 3.01 (q, J = 4.0
Hz, 2 H), 2.84 (s, 1 H), 2.69-2.45 (m, 2 H), 2.30 (s, 3
H), 1.26 (t, J = 2.7
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 175.9,
165.8, 165.7, 144.5, 141.1, 128.9, 128.7, 126.5, 103.2, 103.1, 60.8,
52.3, 38.3, 30.9, 18.6, 14.7. ESI-MS: m/z = 287.3 [M + 1].
Compound 5e: ¹H NMR (400 MHz,
CDCl3): δ = 7.65-6.97 (m,
4 H), 4.11 (q, J = 4.0
Hz, 2 H), 2.62 (s, 3 H), 1.02 (t, J = 2.7
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 165.5, 162.4
(d, J = 250.0
Hz), 146.4, 139.7, 139.6, 128.4 (d, J = 10.0
Hz), 115.5 (d, J = 20.0
Hz), 101.4, 60.1, 55.0, 18.5, 14.2. ESI-MS: m/z = 277.3 [M + 1].