Synthesis 2009(7): 1163-1169  
DOI: 10.1055/s-0028-1087850
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

An Environmentally Benign TEMPO-Catalyzed Efficient Alcohol Oxidation System with a Recyclable Hypervalent Iodine(III) Reagent and Its Facile Preparation

Xiao-Qiang Li, Chi Zhang*
The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. of China
Fax: +86(22)23499247; e-Mail: zhangchi@nankai.edu.cn;
Weitere Informationen

Publikationsverlauf

Received 24 September 2008
Publikationsdatum:
02. März 2009 (online)

Abstract

A highly efficient 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO) catalyzed alcohol oxidation system using recyclable 1-chloro-1,2-benziodoxol-3(1H)-one as the terminal oxidant in ethyl acetate, which is an environmentally friend organic solvent, at room temperature has been developed. A variety of alcohols can be oxidized to their corresponding carbonyl compounds in high to excellent yields. Various heteroaromatic rings and C=C bonds are well tolerated under the reaction conditions. 1-Chloro-1,2-benziodoxol-3(1H)-one can be easily recycled after simple solid/liquid-phase separation and the subsequent regeneration sequence. In addition, a safe, very convenient, large-scale, and high-yielding procedure for the preparation of 1-chloro-1,2-benziodoxol-3(1H)-one from 2-iodobenzoic acid has been developed using sodium chlorite as the stoichiometric oxidant in dilute hydrochloric acid at room ­temperature.

    References

  • 1a Larock RC. Comprehensive Organic Transformations   2nd ed.:  Wiley; New York: 1999. 
  • 1b Tojo G. Fernández M. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice   Springer; New York: 2006. 
  • For some reviews on hypervalent iodine reagents, see:
  • 2a Banks DF. Chem. Rev.  1966,  66:  243 
  • 2b Stang PJ. Zhdankin VV. Chem. Rev.  1996,  96:  1123 
  • 2c Varvoglis A. Hypervalent Iodine in Organic Synthesis   Academic Press; San Diego: 1997. 
  • 2d Stang PJ. Zhdankin VV. Chem. Rev.  2002,  102:  2523 
  • 2e Hypervalent Iodine Chemistry   Wirth T. Springer; Heidelberg: 2003. 
  • 2f Tohma H. Kita Y. Adv. Synth. Catal.  2004,  346:  111 
  • 2g Wirth T. Angew. Chem. Int. Ed.  2005,  44:  3656 
  • 2h Matveeva ED. Proskurnina MV. Zefirov NS. Heteroat. Chem.  2006,  17:  595 
  • 3a Ley SV. Thomas AW. Finch H. J. Chem. Soc., Perkin Trans. 1  1999,  669 
  • 3b Tohma H. Morioka H. Harayama Y. Hashizume M. Kita Y. Tetrahedron Lett.  2001,  42:  6899 
  • 3c Togo H. Sakuratani K. Synlett  2002,  1966 
  • 3d Sakuratani K. Togo H. Synthesis  2003,  21 
  • 3e Shang Y. But TYS. Togo H. Toy PH. Synlett  2007,  67 
  • 3f Jang H.-S. Chung W.-J. Lee Y.-S. Tetrahedron Lett.  2007,  48:  3731 
  • 3g Ladziata U. Zhdankin VV. Synlett  2007,  527 
  • 3h Karimov RR. Kazhkenov Z.-GM. Modjewski MJ. Peterson EM. Zhdankin VV. J. Org. Chem.  2007,  72:  8149 
  • 4a Tohma H. Maruyama A. Maeda A. Maegawa T. Dohi T. Shiro M. Morita T. Kita Y. Angew. Chem. Int. Ed.  2004,  43:  3595 
  • 4b Dohi T. Maruyama A. Yoshimura M. Morimoto K. Tohma H. Shiro M. Kita Y. Chem. Commun.  2005,  2205 
  • 5a Moroda A. Togo H. Tetrahedron  2006,  62:  12408 
  • 5b Telvekar VN. Herlekar OP. Synth. Commun.  2007,  37:  859 
  • 6a Rocaboy C. Gladysz JA. Chem. Eur. J.  2003,  9:  88 
  • 6b Tesevic V. Gladysz JA. J. Org. Chem.  2006,  71:  7433 
  • 7a Yusubov MS. Drygunova LA. Zhdankin VV. Synthesis  2004,  2289 
  • 7b Yusubov MS. Gilmkhanova MP. Zhdankin VV. Kirschning A. Synlett  2007,  563 
  • 7c Kirschning A. Yusubov MS. Yusubova RY. Chi K.-W. Park JY. Beilstein J. Org. Chem.  2007,  3:  19 
  • 7d Yusubov MS. Funk TV. Chi K.-W. Cha E.-H. Kim GH. Kirschning A. Zhdankin VV. J. Org. Chem.  2008,  73:  295 
  • 8 Zhdankin VV. Curr. Org. Synth.  2005,  2:  121 
  • 9a Zhao X.-F. Zhang C. Synthesis  2007,  551 
  • 9b Li X.-Q. Zhao X.-F. Zhang C. Synthesis  2008,  2589 
  • 10 Shibuya M. Tomizawa M. Suzuki I. Iwabuchi Y. J. Am. Chem. Soc.  2006,  128:  8412 
  • For the preparation of 1, see:
  • 11a Meyer V. Wachter W. Ber. Dtsch. Chem. Ges.  1892,  25:  2632 
  • 11b Willgerodt C. J. Prakt. Chem.  1894,  49:  466 
  • 11c Amey RL. Martin JC. J. Org. Chem.  1979,  44:  1779 
  • For the crystal structure of 1, see:
  • 11d Prout K. Stevens NM. Coda A. Tazzoli V. Shaw RA. Demir T. Z. Naturforsch., B: Chem. Sci.  1976,  31:  687 
  • 11e Takahashi M. Nanba H. Kitazawa T. Takeda M. Ito Y. J. Coord. Chem.  1996,  37:  371 
  • For the chlorination of aromatic hydrocarbons, see:
  • 11f Andrews LJ. Keefer RM. J. Am. Chem. Soc.  1959,  81:  4218 
  • For the application in the mechanism study on the cleavage of toxic phosphate, see:
  • 11g Moss RA. Zhang H. J. Am. Chem. Soc.  1994,  116:  4471 
  • 12 Sheldon RA. Green Chem.  2005,  7:  267 ; or see http://en.wikipedia.org/wiki/Ethyl_acetate
  • 13 De Mico A. Margarita R. Parlanti L. Vescovi A. Piancatelli G. J. Org. Chem.  1997,  62:  6974 
  • Iodanyl radical A has been proposed before, generated from homolytic cleavage of I-X bonds (X = N, O) of analogues of 1, ending up with 2-iodobenzoic acid, see:
  • 14a Zhdankin VV. Krasutsky AP. Kuehl CJ. Simonsen AJ. Woodward JK. Mismash B. Bolz JT. J. Am. Chem. Soc.  1996,  118:  5192 
  • 14b Ochiai M. Ito T. Takahashi H. Nakanishi A. Toyonari M. Sueda T. Goto S. Shiro M. J. Am. Chem. Soc.  1996,  118:  7716 
  • 14c Barluenga J. Campos-Gómez E. Rodríguez D. González-Bobes F. González JM. Angew. Chem. Int. Ed.  2005,  44:  5851 
  • 15a Hunter DH. Barton DHR. Motherwell WJ. Tetrahedron Lett.  1984,  25:  603 
  • 15b Hunter DH. Racok JS. Rey AW. Ponce YZ. J. Org. Chem.  1988,  53:  1278 
  • 16a De Nooy AEJ. Beswmer AC. Van Bekkum H. Synthesis  1996,  1153 
  • 16b Adam W. Saha-Möller CR. Ganeshpure PA. Chem. Rev.  2001,  101:  3499 
  • 16c Vogler T. Studer A. Synthesis  2008,  1979 
  • For pyridine used as a nucleophile onto iodine(III) reagents in the presence of TMSOTf, see:
  • 18a Weiss R. Seubert J. Angew. Chem. Int. Ed.  1994,  33:  891 
  • 18b Zhdankin VV. Koposov AY. Yashin NV. Tetrahedron Lett.  2002,  43:  5735 
  • 18c

    However, the possibility of pyridine being a nucleophile in the present reaction could be ruled out since oxidant 1 was recovered more than 90% after stirring the mixture of 1 and pyridine with or without TEMPO in EtOAc for much longer time (24 h) than that required for the alcohol oxidation (0.5 to 9 h). Notably, other organic bases such as triethylamine and DMAP which could also be used as acid scavengers destroyed the oxidant 1 which was confirmed by two control experiments.

  • 19 When bleach was used instead of NaClO2, a mixture containing 1, and other hard to separate byproducts was obtained. The melting point of obtained products was from 167 ˚C to 234 ˚C, very different from that of 1 (Lit.¹¹c 168-171 ˚C). Indicated by the melting points, one of the byproducts may be 1-hydroxy-1,2-benziodoxol-3 (1H)-one (IBA, Lit.¹9 mp 231-232 ˚C). It was reported that IBA could be generated from hydrolysis of 1 in strong basic media see: Baker GP. Mann FG. Sheppard N. Tetlow AJ. J. Chem. Soc.  1965,  3721 ; Since the pH value of bleach is 13-14, IBA could be generated from 1 at the beginning of the oxidizing process with bleach as the oxidant
  • 20 Constable DJC. Dunn PJ. Hayler JD. Humphrey GR. Leazer JL. Linderman RJ. Lorenz K. Manley J. Pearlman BA. Wells A. Zaks A. Zhang TY. Green Chem.  2007,  9:  411 
  • 21 Velusamy S. Ahamed M. Punniyamurthy T. Org. Lett.  2004,  6:  4821 
  • 22 Bertini V. Lucchesini F. Pocci M. De Munno A. Heterocycles  1995,  41:  675 
  • 23 Berube M. Poirier D. Org. Lett.  2004,  6:  3127 
  • 24 Inokuchi T. Matsumoto S. Torii S. J. Org. Chem.  1991,  56:  2416 
17

Radical A or A′ was suggested to be a poor oxidant towards TEMPO by trapping experiments using TEMPO performed by Ochiai et al. in their oxidation of the benzylic and allylic ether by stable hypervalent (tert-butylperoxy)iodanes via benzylic and allylic radicals in which radical A or A′ was employed as a highly efficient hydrogen-abstracting species (ref. 14b). On the other hand, the oxidation of TEMPO by chlorine atom is well established (refs. 9a and 15). Therefore, we proposed that radical A′ could oxidize hydroxylamine C to TEMPO via a hydrogen-abstracting step.