Abstract
A highly efficient 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO)
catalyzed alcohol oxidation system using recyclable 1-chloro-1,2-benziodoxol-3(1H )-one as the terminal oxidant in ethyl acetate,
which is an environmentally friend organic solvent, at room temperature
has been developed. A variety of alcohols can be oxidized to their
corresponding carbonyl compounds in high to excellent yields. Various
heteroaromatic rings and C=C bonds are well tolerated under
the reaction conditions. 1-Chloro-1,2-benziodoxol-3(1H )-one can be easily recycled after simple
solid/liquid-phase separation and the subsequent regeneration
sequence. In addition, a safe, very convenient, large-scale, and
high-yielding procedure for the preparation of 1-chloro-1,2-benziodoxol-3(1H )-one from 2-iodobenzoic acid has been
developed using sodium chlorite as the stoichiometric oxidant
in dilute hydrochloric acid at room temperature.
Key words
alcohol - hypervalent iodine - oxidation - recyclable - TEMPO
References
1a
Larock RC.
Comprehensive Organic
Transformations
2nd ed.:
Wiley;
New
York:
1999.
1b
Tojo G.
Fernández M.
Oxidation of Alcohols
to Aldehydes and Ketones: A Guide to Current Common Practice
Springer;
New
York:
2006.
For some reviews on hypervalent
iodine reagents, see:
2a
Banks DF.
Chem. Rev.
1966,
66:
243
2b
Stang PJ.
Zhdankin VV.
Chem.
Rev.
1996,
96:
1123
2c
Varvoglis A.
Hypervalent Iodine in Organic Synthesis
Academic Press;
San
Diego:
1997.
2d
Stang PJ.
Zhdankin VV.
Chem.
Rev.
2002,
102:
2523
2e
Hypervalent
Iodine Chemistry
Wirth T.
Springer;
Heidelberg:
2003.
2f
Tohma H.
Kita Y.
Adv. Synth. Catal.
2004,
346:
111
2g
Wirth T.
Angew.
Chem. Int. Ed.
2005,
44:
3656
2h
Matveeva ED.
Proskurnina MV.
Zefirov NS.
Heteroat. Chem.
2006,
17:
595
3a
Ley SV.
Thomas AW.
Finch H.
J. Chem. Soc., Perkin Trans.
1
1999,
669
3b
Tohma H.
Morioka H.
Harayama Y.
Hashizume M.
Kita Y.
Tetrahedron
Lett.
2001,
42:
6899
3c
Togo H.
Sakuratani K.
Synlett
2002,
1966
3d
Sakuratani K.
Togo H.
Synthesis
2003,
21
3e
Shang Y.
But TYS.
Togo H.
Toy PH.
Synlett
2007,
67
3f
Jang H.-S.
Chung W.-J.
Lee Y.-S.
Tetrahedron
Lett.
2007,
48:
3731
3g
Ladziata U.
Zhdankin VV.
Synlett
2007,
527
3h
Karimov RR.
Kazhkenov Z.-GM.
Modjewski MJ.
Peterson EM.
Zhdankin VV.
J.
Org. Chem.
2007,
72:
8149
4a
Tohma H.
Maruyama A.
Maeda A.
Maegawa T.
Dohi T.
Shiro M.
Morita T.
Kita Y.
Angew. Chem.
Int. Ed.
2004,
43:
3595
4b
Dohi T.
Maruyama A.
Yoshimura M.
Morimoto K.
Tohma H.
Shiro M.
Kita Y.
Chem.
Commun.
2005,
2205
5a
Moroda A.
Togo H.
Tetrahedron
2006,
62:
12408
5b
Telvekar VN.
Herlekar OP.
Synth.
Commun.
2007,
37:
859
6a
Rocaboy C.
Gladysz JA.
Chem.
Eur. J.
2003,
9:
88
6b
Tesevic V.
Gladysz JA.
J. Org. Chem.
2006,
71:
7433
7a
Yusubov MS.
Drygunova LA.
Zhdankin VV.
Synthesis
2004,
2289
7b
Yusubov MS.
Gilmkhanova MP.
Zhdankin VV.
Kirschning A.
Synlett
2007,
563
7c
Kirschning A.
Yusubov MS.
Yusubova RY.
Chi K.-W.
Park JY.
Beilstein J. Org. Chem.
2007,
3:
19
7d
Yusubov MS.
Funk TV.
Chi K.-W.
Cha E.-H.
Kim GH.
Kirschning A.
Zhdankin VV.
J. Org. Chem.
2008,
73:
295
8
Zhdankin VV.
Curr.
Org. Synth.
2005,
2:
121
9a
Zhao X.-F.
Zhang C.
Synthesis
2007,
551
9b
Li
X.-Q.
Zhao X.-F.
Zhang C.
Synthesis
2008,
2589
10
Shibuya M.
Tomizawa M.
Suzuki I.
Iwabuchi Y.
J. Am. Chem. Soc.
2006,
128:
8412
For the preparation of 1 , see:
11a
Meyer V.
Wachter W.
Ber. Dtsch. Chem. Ges.
1892,
25:
2632
11b
Willgerodt C.
J.
Prakt. Chem.
1894,
49:
466
11c
Amey RL.
Martin JC.
J.
Org. Chem.
1979,
44:
1779
For the crystal structure of 1 ,
see:
11d
Prout K.
Stevens NM.
Coda A.
Tazzoli V.
Shaw RA.
Demir T.
Z. Naturforsch., B: Chem. Sci.
1976,
31:
687
11e
Takahashi M.
Nanba H.
Kitazawa T.
Takeda M.
Ito Y.
J.
Coord. Chem.
1996,
37:
371
For the chlorination of aromatic hydrocarbons, see:
11f
Andrews LJ.
Keefer RM.
J.
Am. Chem. Soc.
1959,
81:
4218
For the application in the mechanism study on the cleavage
of toxic phosphate, see:
11g
Moss RA.
Zhang H.
J. Am. Chem. Soc.
1994,
116:
4471
12
Sheldon RA.
Green
Chem.
2005,
7:
267 ;
or see http://en.wikipedia.org/wiki/Ethyl_acetate
13
De Mico A.
Margarita R.
Parlanti L.
Vescovi A.
Piancatelli G.
J.
Org. Chem.
1997,
62:
6974
Iodanyl radical A has
been proposed before, generated from homolytic cleavage of I-X
bonds (X = N, O) of analogues of 1 , ending up with 2-iodobenzoic acid, see:
14a
Zhdankin VV.
Krasutsky AP.
Kuehl CJ.
Simonsen AJ.
Woodward JK.
Mismash B.
Bolz JT.
J. Am. Chem. Soc.
1996,
118:
5192
14b
Ochiai M.
Ito T.
Takahashi H.
Nakanishi A.
Toyonari M.
Sueda T.
Goto S.
Shiro M.
J. Am. Chem. Soc.
1996,
118:
7716
14c
Barluenga J.
Campos-Gómez E.
Rodríguez D.
González-Bobes F.
González JM.
Angew.
Chem. Int. Ed.
2005,
44:
5851
15a
Hunter DH.
Barton DHR.
Motherwell WJ.
Tetrahedron
Lett.
1984,
25:
603
15b
Hunter DH.
Racok JS.
Rey AW.
Ponce YZ.
J.
Org. Chem.
1988,
53:
1278
16a
De Nooy AEJ.
Beswmer AC.
Van Bekkum H.
Synthesis
1996,
1153
16b
Adam W.
Saha-Möller CR.
Ganeshpure PA.
Chem. Rev.
2001,
101:
3499
16c
Vogler T.
Studer A.
Synthesis
2008,
1979
17 Radical A or A′ was suggested to be a poor
oxidant towards TEMPO by trapping experiments using TEMPO performed by
Ochiai et al. in their oxidation of the benzylic and allylic ether
by stable hypervalent (tert -butylperoxy)iodanes
via benzylic and allylic radicals in which radical A or A′ was employed as a highly efficient
hydrogen-abstracting species (ref. 14b). On the other hand, the
oxidation of TEMPO by chlorine atom is well established (refs. 9a
and 15). Therefore, we proposed that radical A′ could
oxidize hydroxylamine C to TEMPO via a
hydrogen-abstracting step.
For pyridine used as a nucleophile
onto iodine(III) reagents in the presence of TMSOTf, see:
18a
Weiss R.
Seubert J.
Angew. Chem. Int. Ed.
1994,
33:
891
18b
Zhdankin VV.
Koposov AY.
Yashin NV.
Tetrahedron Lett.
2002,
43:
5735
18c However, the possibility
of pyridine being a nucleophile in the present reaction could be
ruled out since oxidant 1 was recovered
more than 90% after stirring the mixture of 1 and
pyridine with or without TEMPO in EtOAc for much longer time (24
h) than that required for the alcohol oxidation (0.5 to 9 h). Notably,
other organic bases such as triethylamine and DMAP which could also
be used as acid scavengers destroyed the oxidant 1 which
was confirmed by two control experiments.
19 When bleach was used instead of
NaClO2 , a mixture containing 1 ,
and other hard to separate byproducts was obtained. The melting
point of obtained products was from 167 ˚C to 234 ˚C,
very different from that of 1 (Lit.¹¹c 168-171 ˚C).
Indicated by the melting points, one of the byproducts may be 1-hydroxy-1,2-benziodoxol-3
(1H )-one (IBA, Lit.¹9 mp
231-232 ˚C). It was reported that IBA could be
generated from hydrolysis of 1 in strong
basic media see: Baker GP.
Mann FG.
Sheppard N.
Tetlow AJ.
J. Chem. Soc.
1965,
3721 ; Since the pH value of bleach is 13-14,
IBA could be generated from 1 at the beginning
of the oxidizing process with bleach as the oxidant
20
Constable DJC.
Dunn PJ.
Hayler JD.
Humphrey GR.
Leazer JL.
Linderman RJ.
Lorenz K.
Manley J.
Pearlman BA.
Wells A.
Zaks A.
Zhang TY.
Green Chem.
2007,
9:
411
21
Velusamy S.
Ahamed M.
Punniyamurthy T.
Org.
Lett.
2004,
6:
4821
22
Bertini V.
Lucchesini F.
Pocci M.
De Munno A.
Heterocycles
1995,
41:
675
23
Berube M.
Poirier D.
Org. Lett.
2004,
6:
3127
24
Inokuchi T.
Matsumoto S.
Torii S.
J.
Org. Chem.
1991,
56:
2416