RSS-Feed abonnieren
DOI: 10.1055/s-0028-1087850
An Environmentally Benign TEMPO-Catalyzed Efficient Alcohol Oxidation System with a Recyclable Hypervalent Iodine(III) Reagent and Its Facile Preparation
Publikationsverlauf
Publikationsdatum:
02. März 2009 (online)
Abstract
A highly efficient 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO) catalyzed alcohol oxidation system using recyclable 1-chloro-1,2-benziodoxol-3(1H)-one as the terminal oxidant in ethyl acetate, which is an environmentally friend organic solvent, at room temperature has been developed. A variety of alcohols can be oxidized to their corresponding carbonyl compounds in high to excellent yields. Various heteroaromatic rings and C=C bonds are well tolerated under the reaction conditions. 1-Chloro-1,2-benziodoxol-3(1H)-one can be easily recycled after simple solid/liquid-phase separation and the subsequent regeneration sequence. In addition, a safe, very convenient, large-scale, and high-yielding procedure for the preparation of 1-chloro-1,2-benziodoxol-3(1H)-one from 2-iodobenzoic acid has been developed using sodium chlorite as the stoichiometric oxidant in dilute hydrochloric acid at room temperature.
Key words
alcohol - hypervalent iodine - oxidation - recyclable - TEMPO
-
1a
Larock RC. Comprehensive Organic Transformations 2nd ed.: Wiley; New York: 1999. -
1b
Tojo G.Fernández M. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice Springer; New York: 2006. - For some reviews on hypervalent iodine reagents, see:
-
2a
Banks DF. Chem. Rev. 1966, 66: 243 -
2b
Stang PJ.Zhdankin VV. Chem. Rev. 1996, 96: 1123 -
2c
Varvoglis A. Hypervalent Iodine in Organic Synthesis Academic Press; San Diego: 1997. -
2d
Stang PJ.Zhdankin VV. Chem. Rev. 2002, 102: 2523 -
2e
Hypervalent
Iodine Chemistry
Wirth T. Springer; Heidelberg: 2003. -
2f
Tohma H.Kita Y. Adv. Synth. Catal. 2004, 346: 111 -
2g
Wirth T. Angew. Chem. Int. Ed. 2005, 44: 3656 -
2h
Matveeva ED.Proskurnina MV.Zefirov NS. Heteroat. Chem. 2006, 17: 595 -
3a
Ley SV.Thomas AW.Finch H. J. Chem. Soc., Perkin Trans. 1 1999, 669 -
3b
Tohma H.Morioka H.Harayama Y.Hashizume M.Kita Y. Tetrahedron Lett. 2001, 42: 6899 -
3c
Togo H.Sakuratani K. Synlett 2002, 1966 -
3d
Sakuratani K.Togo H. Synthesis 2003, 21 -
3e
Shang Y.But TYS.Togo H.Toy PH. Synlett 2007, 67 -
3f
Jang H.-S.Chung W.-J.Lee Y.-S. Tetrahedron Lett. 2007, 48: 3731 -
3g
Ladziata U.Zhdankin VV. Synlett 2007, 527 -
3h
Karimov RR.Kazhkenov Z.-GM.Modjewski MJ.Peterson EM.Zhdankin VV. J. Org. Chem. 2007, 72: 8149 -
4a
Tohma H.Maruyama A.Maeda A.Maegawa T.Dohi T.Shiro M.Morita T.Kita Y. Angew. Chem. Int. Ed. 2004, 43: 3595 -
4b
Dohi T.Maruyama A.Yoshimura M.Morimoto K.Tohma H.Shiro M.Kita Y. Chem. Commun. 2005, 2205 -
5a
Moroda A.Togo H. Tetrahedron 2006, 62: 12408 -
5b
Telvekar VN.Herlekar OP. Synth. Commun. 2007, 37: 859 -
6a
Rocaboy C.Gladysz JA. Chem. Eur. J. 2003, 9: 88 -
6b
Tesevic V.Gladysz JA. J. Org. Chem. 2006, 71: 7433 -
7a
Yusubov MS.Drygunova LA.Zhdankin VV. Synthesis 2004, 2289 -
7b
Yusubov MS.Gilmkhanova MP.Zhdankin VV.Kirschning A. Synlett 2007, 563 -
7c
Kirschning A.Yusubov MS.Yusubova RY.Chi K.-W.Park JY. Beilstein J. Org. Chem. 2007, 3: 19 -
7d
Yusubov MS.Funk TV.Chi K.-W.Cha E.-H.Kim GH.Kirschning A.Zhdankin VV. J. Org. Chem. 2008, 73: 295 - 8
Zhdankin VV. Curr. Org. Synth. 2005, 2: 121 -
9a
Zhao X.-F.Zhang C. Synthesis 2007, 551 -
9b
Li X.-Q.Zhao X.-F.Zhang C. Synthesis 2008, 2589 - 10
Shibuya M.Tomizawa M.Suzuki I.Iwabuchi Y. J. Am. Chem. Soc. 2006, 128: 8412 - For the preparation of 1, see:
-
11a
Meyer V.Wachter W. Ber. Dtsch. Chem. Ges. 1892, 25: 2632 -
11b
Willgerodt C. J. Prakt. Chem. 1894, 49: 466 -
11c
Amey RL.Martin JC. J. Org. Chem. 1979, 44: 1779 - For the crystal structure of 1, see:
-
11d
Prout K.Stevens NM.Coda A.Tazzoli V.Shaw RA.Demir T. Z. Naturforsch., B: Chem. Sci. 1976, 31: 687 -
11e
Takahashi M.Nanba H.Kitazawa T.Takeda M.Ito Y. J. Coord. Chem. 1996, 37: 371 - For the chlorination of aromatic hydrocarbons, see:
-
11f
Andrews LJ.Keefer RM. J. Am. Chem. Soc. 1959, 81: 4218 - For the application in the mechanism study on the cleavage of toxic phosphate, see:
-
11g
Moss RA.Zhang H. J. Am. Chem. Soc. 1994, 116: 4471 - 12
Sheldon RA. Green Chem. 2005, 7: 267 ; or see http://en.wikipedia.org/wiki/Ethyl_acetate - 13
De Mico A.Margarita R.Parlanti L.Vescovi A.Piancatelli G. J. Org. Chem. 1997, 62: 6974 - Iodanyl radical A has been proposed before, generated from homolytic cleavage of I-X bonds (X = N, O) of analogues of 1, ending up with 2-iodobenzoic acid, see:
-
14a
Zhdankin VV.Krasutsky AP.Kuehl CJ.Simonsen AJ.Woodward JK.Mismash B.Bolz JT. J. Am. Chem. Soc. 1996, 118: 5192 -
14b
Ochiai M.Ito T.Takahashi H.Nakanishi A.Toyonari M.Sueda T.Goto S.Shiro M. J. Am. Chem. Soc. 1996, 118: 7716 -
14c
Barluenga J.Campos-Gómez E.Rodríguez D.González-Bobes F.González JM. Angew. Chem. Int. Ed. 2005, 44: 5851 -
15a
Hunter DH.Barton DHR.Motherwell WJ. Tetrahedron Lett. 1984, 25: 603 -
15b
Hunter DH.Racok JS.Rey AW.Ponce YZ. J. Org. Chem. 1988, 53: 1278 -
16a
De Nooy AEJ.Beswmer AC.Van Bekkum H. Synthesis 1996, 1153 -
16b
Adam W.Saha-Möller CR.Ganeshpure PA. Chem. Rev. 2001, 101: 3499 -
16c
Vogler T.Studer A. Synthesis 2008, 1979 - For pyridine used as a nucleophile onto iodine(III) reagents in the presence of TMSOTf, see:
-
18a
Weiss R.Seubert J. Angew. Chem. Int. Ed. 1994, 33: 891 -
18b
Zhdankin VV.Koposov AY.Yashin NV. Tetrahedron Lett. 2002, 43: 5735 -
18c
However, the possibility of pyridine being a nucleophile in the present reaction could be ruled out since oxidant 1 was recovered more than 90% after stirring the mixture of 1 and pyridine with or without TEMPO in EtOAc for much longer time (24 h) than that required for the alcohol oxidation (0.5 to 9 h). Notably, other organic bases such as triethylamine and DMAP which could also be used as acid scavengers destroyed the oxidant 1 which was confirmed by two control experiments.
- 19 When bleach was used instead of
NaClO2, a mixture containing 1,
and other hard to separate byproducts was obtained. The melting
point of obtained products was from 167 ˚C to 234 ˚C,
very different from that of 1 (Lit.¹¹c 168-171 ˚C).
Indicated by the melting points, one of the byproducts may be 1-hydroxy-1,2-benziodoxol-3
(1H)-one (IBA, Lit.¹9 mp
231-232 ˚C). It was reported that IBA could be
generated from hydrolysis of 1 in strong
basic media see:
Baker GP.Mann FG.Sheppard N.Tetlow AJ. J. Chem. Soc. 1965, 3721 ; Since the pH value of bleach is 13-14, IBA could be generated from 1 at the beginning of the oxidizing process with bleach as the oxidant - 20
Constable DJC.Dunn PJ.Hayler JD.Humphrey GR.Leazer JL.Linderman RJ.Lorenz K.Manley J.Pearlman BA.Wells A.Zaks A.Zhang TY. Green Chem. 2007, 9: 411 - 21
Velusamy S.Ahamed M.Punniyamurthy T. Org. Lett. 2004, 6: 4821 - 22
Bertini V.Lucchesini F.Pocci M.De Munno A. Heterocycles 1995, 41: 675 - 23
Berube M.Poirier D. Org. Lett. 2004, 6: 3127 - 24
Inokuchi T.Matsumoto S.Torii S. J. Org. Chem. 1991, 56: 2416
References
Radical A or A′ was suggested to be a poor oxidant towards TEMPO by trapping experiments using TEMPO performed by Ochiai et al. in their oxidation of the benzylic and allylic ether by stable hypervalent (tert-butylperoxy)iodanes via benzylic and allylic radicals in which radical A or A′ was employed as a highly efficient hydrogen-abstracting species (ref. 14b). On the other hand, the oxidation of TEMPO by chlorine atom is well established (refs. 9a and 15). Therefore, we proposed that radical A′ could oxidize hydroxylamine C to TEMPO via a hydrogen-abstracting step.