RSS-Feed abonnieren
DOI: 10.1055/s-0028-1087522
Palladium(0)-Catalyzed Benzylation of H-Phosphonate Diesters: An Efficient Entry to Benzylphosphonates
Publikationsverlauf
Publikationsdatum:
15. Januar 2009 (online)
Abstract
A new, efficient method for the synthesis of benzylphosphonate diesters via a palladium(0)-catalyzed cross-coupling reaction between benzyl halides and H-phosphonate diesters, using Pd(OAc)2 as a palladium source and Xantphos as a supporting ligand, has been developed.
Key words
benzylphosphonates - palladium cross-coupling - H-phosphonates - C-phosphonates
-
1a
Kittredge JS.Roberts E. Science 1969, 164: 37 -
1b
White AK.Metcalf WW. Annu. Rev. Microbiol. 2007, 61: 379 - 2
Engel R. Chem. Rev. 1977, 77: 349 - 3
Kafarski P.Lejczak B. Phosphorus, Sulfur Silicon 1991, 63: 193 - 4
Huang JM.Chen RY. Heteroatom. Chem. 2000, 11: 480 - 5
Engel R. In Handbook of Organophosphorus ChemistryEngel R. Marcel Dekker; New York: 1992. p.559 -
6a
Michaelis A.Kaehne R. Chem. Ber. 1898, 31: 1048 -
6b
Methoden
der organischen Chemie (Houben-Weyl)
Vol. XII/1:
Müller E. George Thieme Verlag; Stuttgart: 1964. p.433 - 7
Bhattacharya AK.Thyagarajan G. Chem. Rev. 1981, 81: 415 -
8a
Michaelis A.Becker T. Chem. Ber. 1897, 30: 1003 -
8b
Methoden
der organischen Chemie (Houben-Weyl)
Vol. XII/1:
Müller E. George Thieme Verlag; Stuttgart: 1964. p.446 -
8c
Waschbüsch R.Carran J.Marinetti A.Savignac P. Synthesis 1997, 727 - 9
Brill TB.Landon SJ. Chem. Rev. 1984, 84: 577 - 10
Harizi A.Zantour H. Phosphorus, Sulfur Silicon 2004, 179: 1883 - 11
Saady M.Lebeau L.Mioskowski C. Helv. Chim. Acta 1995, 78: 670 - 12
DeBruin KE.Chandrasekaran S. J. Am. Chem. Soc. 1973, 95: 974 - 13
Kers A.Stawinski J.Dembkowski L.Kraszewski A. Tetrahedron 1997, 53: 12691 -
14a
Witt D.Rachon J. Phosphorus, Sulfur Silicon 1995, 107: 33 -
14b
Witt D.Rachon J. Heteroatom. Chem. 1996, 7: 359 -
15a
Birckenbach L.Kellermann K. Chem. Ber. 1925, 58: 786 -
15b
Michalski J.Skowronska A.Lopusinski A. Phosphorus, Sulfur Silicon 1991, 58: 61 -
16a
Yao Z.-J.Gao Y.Burke TR. Tetrahedron: Asymmetry 1997, 10: 3727 -
16b
Li P.Zhang M.Peach ML.Liu H.Yang D.Roller PP. Org. Lett. 2003, 5: 3095 - 17
Löschner T.Engels JW. Nucleic Acids Res. 1990, 18: 5083 -
18a
Alt M.Eisenhardt S.Serwe M.Renz R.Engels JW.Caselmann WH. Eur. J. Clin. Invest. 1999, 29: 868 -
18b
Lehman TJ.Engels JW. Bioorg. Med. Chem. 2001, 9: 1827 - 19
Amberg S.Engels JW. Helv. Chim. Acta 2002, 85: 2503 - 20
Johansson T.Stawinski J. Chem. Commun. 2001, 2564 - 21
Lavén G.Stawinski J. Coll. Symposium Series 2005, 7: 195 - 22
Abbas S.Hayes CJ. Synlett 1999, 1124 - 23
Fitton P.McKeon JE.Ream BC. J. Chem. Soc., Chem. Commun. 1969, 370 - 24
Liegault B.Renaud J.-L.Bruneau C. Chem. Soc. Rev. 2008, 36: 290 - 25
Prim D.Campagne J.-M.Joseph D.Andrioletti B. Tetrahedron 2002, 58: 2041 - 26
Bravo-Altamirano K.Huang ZH.Montchamp JL. Tetrahedron 2005, 61: 6315 - 27
Schwan AL. Chem. Soc. Rev. 2004, 33: 218 - 28
Abbas S.Hayes CJ.Worden S. Tetrahedron Lett. 2000, 41: 3215 - 30
Stockland RA.Levine AM.Giovine MT.Guzei IA.Cannistra JC. Organometallics 2004, 23: 647 - 31
Klingensmith LM.Strieter ER.Barder TE.Buchwald SL. Organometallics 2006, 25: 82 - 32 Lower yields of diphenyl benzylphosphonate
for the reactions of diphenyl H-phosphonate (Table 2, entries
9 and 10) were due to partial hydrolysis of the starting H-phosphonate
under the reaction conditions
- 33
Kalek M.Stawinski J. Organometallics 2007, 26: 5840 - 34
Stille JK.Lau KSY. Acc. Chem. Res. 1977, 10: 434 - 35
Amatore C.Jutand A. J. Organomet. Chem. 1999, 576: 254 - 36
Hartwig JF. Acc. Chem. Res. 1998, 31: 852 - 37
Stawinski J.Strömberg R.Zain R. Tetrahedron Lett. 1992, 33: 3185 -
39a
Xu Y.Zhang J. J. Chem. Soc., Chem. Commun. 1986, 1606 -
39b
Zhang J.Xu Y.Huang G.Guo H. Tetrahedron Lett. 1988, 29: 1955
References and Notes
Presence of water in the reaction mixture facilitated reduction of palladium(II) acetate and resulted in improved reproducibility of the reactions.
38
Typical Procedure
for the Preparation of Dinucleoside Benzylphosphonates 2: Pd(OAc)2 (0.05
mmol), Xantphos (0.1 mmol), and N,N-diisopropylethylamine (mmol), were refluxed
for ca. 3 h in degassed THF (5 mL) containing H2O (0.025
mmol). To this, separate diastereomers of dinucleoside H-phosphonate 1 (1a or 1b; 0.5 mmol),
[³7]
and benzyl
bromide (0.75 mmol), dissolved in THF (2 mL), were added and the
mixture was heated under reflux for 3 h. After concentration and
partition of the reaction mixture between sat. aq NaHCO3 and
CH2Cl2, the product was purified by silica
gel column chromatography using a stepwise gradient of ethanol (0-5%)
in CH2Cl2 containing triethylamine (0.02%).
Compounds 2 were obtained as off-white
solids (purity >98%, ¹H NMR
spectroscopy). Compound 2a: 83% yield
from 1a (probably R
P diastereomer).
HRMS: m/z [M + Na]+ calcd
for C54H65N4NaO13PSi+:
1059.3947; found: 1059.3908. Compound 2b:
84% yield from 1b (probably S
P
diastereomer).
HRMS: m/z [M + Na]+ calcd
for C54H65N4NaO13PSi+:
1059.3947; found: 1059.3941.
Benzylphosphonates (Table
[²]
) prepared from benzyl chlorides
vs. benzyl bromides were spectrally indistinguishable, and were
obtained as yellowish oils (purity >98%, ¹H
NMR spectroscopy). Diethyl benzylphosphonate: HRMS: m/z [M + Na]+ calcd
for C11H17NaO3P+:
251.0808; found: 251.0818. Diethyl 4-methyl-benzylphosphonate: HRMS: m/z [M + Na]+ calcd
for C11H17NaO3P+:
265.0964; found: 265.0975. Diethyl
4-methoxybenzylphosphonate:
HRMS: m/z [M + Na]+ calcd for
C12H19NaO4P+:
281.0913; found: 281.0907. Diethyl 4-fluorobenzylphosphonate: HRMS: m/z [M + Na]+ calcd
for C11H16FNaO3P+:
269.0713; found: 269.0727. Diethyl 4-chlorobenzylphosphonate: HRMS: m/z [M + Na]+ calcd
for C11H16ClNaO3P+:
285.0418; found: 285.0394. Diisopropyl benzylphosphonate: HRMS: m/z [M + Na]+ calcd
for C13H21NaO3P+:
279.1121; found: 279.1127. Diphenyl benzylphosphonate: HRMS: m/z [M + Na]+ calcd
for C19H17NaO3P+:
347.0808; found: 347.0798.
The benzylphosphonate diesters
synthesized were characterized by ¹H NMR, ¹³C
NMR, and ³¹P NMR spectroscopy.