Semin Respir Crit Care Med 2008; 29(5): 467-480
DOI: 10.1055/s-0028-1085699
© Thieme Medical Publishers

Lessons from Molecular Epidemiology and Comparative Genomics

Barun Mathema1 , Natalia Kurepina1 , Dorothy Fallows1 , Barry N. Kreiswirth1
  • 1Public Health Research Institute, University of Medicine and Dentistry of New Jersey (UMDNJ), Newark, New Jersey
Further Information

Publication History

Publication Date:
22 September 2008 (online)

ABSTRACT

Molecular biology has revolutionized the field of tuberculosis (TB) research. Comparative genomics and molecular epidemiology are providing revelations about the evolutionary origins of Mycobacterium tuberculosis and phylogenetic relationships between different strains and strain families. Accumulating evidence indicates that distinct strains of M. tuberculosis (genotype) may be associated with differential transmissibility, virulence, and/or clinical manifestations (phenotype). As advances in our understanding of the relationships between genotype and phenotype progress, this knowledge will have important ramifications for TB control and the development of novel vaccines and improved diagnostics. Some of the greatest advantages of molecular epidemiological methods include our abilities to follow transmission of particular strains within communities, track epidemics, and recognize the presence of historic outbreaks. Moreover, there are critical questions about TB that are essentially unanswerable in the absence of molecular techniques. These include our capacity to distinguish exogenous reinfection from endogenous reactivation in recurrent TB cases and to recognize primary transmission of drug resistant strains versus the acquisition of drug resistance via de novo mutations. Finally, an elucidation of the phylogenetic structure and evolutionary history of M. tuberculosis provides a necessary background for understanding the underlying mechanisms responsible for the continued success of this deadly pathogen.

REFERENCES

  • 1 Koch R. Die aetiologie der tuberculose.  Berliner Klinische Wochenschrift. 1882;  19 221-230
  • 2 Cole S T, Brosch R, Parkhill J et al.. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.  , [see comments] [published erratum appears in Nature 1998 Nov 12;396(6707):190] Nature. 1998;  393 537-544
  • 3 Fleischmann R D, Alland D, Eisen J A et al.. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains.  J Bacteriol. 2002;  184 5479-5490
  • 4 Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis .  Proc Natl Acad Sci U S A. 1999;  96 14043-14048
  • 5 Spratt B G, Hanage W P, Feil E J. The relative contributions of recombination and point mutation to the diversification of bacterial clones.  Curr Opin Microbiol. 2001;  4 602-606
  • 6 Feil E J, Enright M C. Analyses of clonality and the evolution of bacterial pathogens.  Curr Opin Microbiol. 2004;  7 308-313
  • 7 Maiden M C, Bygraves J A, Feil E et al.. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms.  Proc Natl Acad Sci U S A. 1998;  95 3140-3145
  • 8 Smith J M, Smith N H, O'Rourke M, Spratt B G. How clonal are bacteria?.  Proc Natl Acad Sci U S A. 1993;  90 4384-4388
  • 9 Kimura M. The Neutral Theory of Molecular Evolution. Cambridge; Cambridge University Press 1983
  • 10 Kidgell C, Reichard U, Wain J et al.. Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old.  Infect Genet Evol. 2002;  2 39-45
  • 11 Hirsh A E, Tsolaki A G, DeRiemer K, Feldman M W, Small P M. Stable association between strains of Mycobacterium tuberculosis and their human host populations.  Proc Natl Acad Sci U S A. 2004;  101 4871-4876
  • 12 Sreevatsan S, Pan X, Stockbauer K E et al.. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination.  Proc Natl Acad Sci U S A. 1997;  94 9869-9874
  • 13 Gutacker M M, Mathema B, Soini H et al.. Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites.  J Infect Dis. 2006;  193 121-128
  • 14 Hughes A L, Friedman R, Murray M. Genomewide pattern of synonymous nucleotide substitution in two complete genomes of Mycobacterium tuberculosis .  Emerg Infect Dis. 2002;  8 1342-1346
  • 15 Garnier T, Eiglmeier K, Camus J C et al.. The complete genome sequence of Mycobacterium bovis .  Proc Natl Acad Sci U S A. 2003;  100 7877-7882
  • 16 Perna N T, Plunkett III G, Burland V et al.. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7.  Nature. 2001;  409 529-533
  • 17 Kapur V, Whittam T S, Musser J M. Is Mycobacterium tuberculosis 15,000 years old?.  J Infect Dis. 1994;  170 1348-1349
  • 18 Brosch R, Gordon S V, Marmiesse M et al.. A new evolutionary scenario for the Mycobacterium tuberculosis complex.  Proc Natl Acad Sci U S A. 2002;  99 3684-3689
  • 19 Huard R C, Fabre M, de Haas P et al.. Novel genetic polymorphisms that further delineate the phylogeny of the Mycobacterium tuberculosis complex.  J Bacteriol. 2006;  188 4271-4287
  • 20 Mostowy S, Cousins D, Brinkman J, Aranaz A, Behr M A. Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex.  J Infect Dis. 2002;  186 74-80
  • 21 Gutierrez M C, Brisse S, Brosch R et al.. Ancient origin and gene mosaicism of the progenitor of mycobacteriumtuberculosis.  PLoS Pathog. 2005;  1 e5
  • 22 Baker L, Brown T, Maiden M C, Drobniewski F. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis .  Emerg Infect Dis. 2004;  10 1568-1577
  • 23 Filliol I, Motiwala A S, Cavatore M et al.. Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set.  J Bacteriol. 2006;  188 759-772
  • 24 Mathema B, Kurepina N E, Bifani P J, Kreiswirth B N. Molecular epidemiology of tuberculosis: current insights.  Clin Microbiol Rev. 2006;  19 658-685
  • 25 Tsolaki A G, Hirsh A E, DeRiemer K et al.. Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains.  Proc Natl Acad Sci U S A. 2004;  101 4865-4870
  • 26 Filliol I, Driscoll J R, van Soolingen D et al.. Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study.  J Clin Microbiol. 2003;  41 1963-1970
  • 27 Liu X, Gutacker M M, Musser J M, Fu Y X. Evidence for recombination in Mycobacterium tuberculosis .  J Bacteriol. 2006;  188 8169-8177
  • 28 Bifani P, Mathema B, Campo M et al.. Molecular identification of streptomycin monoresistant Mycobacterium tuberculosis related to multidrug-resistant W strain.  Emerg Infect Dis. 2001;  7 842-848
  • 29 Mathema B, Bifani P J, Driscoll J et al.. Identification and evolution of an IS6110 low-copy-number Mycobacterium tuberculosis cluster.  J Infect Dis. 2002;  185 641-649
  • 30 Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C. Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome.  Mol Microbiol. 2000;  36 762-771
  • 31 Supply P, Warren R M, Banuls A L et al.. Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area.  Mol Microbiol. 2003;  47 529-538
  • 32 Gagneux S, DeRiemer K, Van T et al.. Variable host-pathogen compatibility in Mycobacterium tuberculosis .  Proc Natl Acad Sci U S A. 2006;  103 2869-2873
  • 33 Kurepina N E, Sreevatsan S, Plikaytis B B et al.. Characterization of the phylogenetic distribution and chromosomal insertion sites of five IS6110 elements in Mycobacterium tuberculosis: non-random integration in the dnaA-dnaN region.  Tuber Lung Dis. 1998;  79 31-42
  • 34 McEvoy C R, Falmer A A, Gey van Pittius N C, Victor T C, van Helden P D, Warren R M. The role of IS6110 in the evolution of Mycobacterium tuberculosis .  Tuberculosis (Edinb). 2007;  87 393-404
  • 35 Van Soolingen D. Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements.  J Intern Med. 2001;  249 1-26
  • 36 Levin B R, Lipsitch M, Bonhoeffer S. Population biology, evolution, and infectious disease: convergence and synthesis.  Science. 1999;  283 806-809
  • 37 Musser J M. Molecular population genetic analysis of emerged bacterial pathogens: selected insights.  Emerg Infect Dis. 1996;  2 1-17
  • 38 Blaser M J, Musser J M. Bacterial polymorphisms and disease in humans.  J Clin Invest. 2001;  107 391-392
  • 39 Smoot J C, Barbian K D, Van Gompel J J et al.. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks.  Proc Natl Acad Sci U S A. 2002;  99 4668-4673
  • 40 Manning S D, Motiwala A S, Springman A C et al.. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks.  Proc Natl Acad Sci U S A. 2008;  105 4868-4873
  • 41 Bifani P J, Plikaytis B B, Kapur V et al.. Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family.  , [see comments] JAMA. 1996;  275 452-457
  • 42 Soto C Y, Menendez M C, Perez E et al.. IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks.  J Clin Microbiol. 2004;  42 212-219
  • 43 Valway S E, Sanchez M P, Shinnick T F et al.. An outbreak involving extensive transmission of a virulent strain of Mycobacterium tuberculosis .  N Engl J Med. 1998;  338 633-639
  • 44 Friedman C R, Quinn G C, Kreiswirth B N et al.. Widespread dissemination of a drug-susceptible strain of Mycobacterium tuberculosis .  , [see comments] J Infect Dis. 1997;  176 478-484
  • 45 Nguyen D, Brassard P, Menzies D et al.. Genomic characterization of an endemic Mycobacterium tuberculosis strain: evolutionary and epidemiologic implications.  J Clin Microbiol. 2004;  42 2573-2580
  • 46 Small P M, Hopewell P C, Singh S P et al.. The epidemiology of tuberculosis in San Francisco: a population-based study using conventional and molecular methods.  , [see comments] N Engl J Med. 1994;  330 1703-1709
  • 47 Borgdorff M W, Nagelkerke N, van Soolingen D, de Haas P E, Veen J, van Embden J D. Analysis of tuberculosis transmission between nationalities in the Netherlands in the period 1993–1995 using DNA fingerprinting.  Am J Epidemiol. 1998;  147 187-195
  • 48 Genewein A, Telenti A, Bernasconi C et al.. Molecular approach to identifying route of transmission of tuberculosis in the community.  , [see comments] Lancet. 1993;  342 841-844
  • 49 Vynnycky E, Nagelkerke N, Borgdorff M W, van Soolingen D, van Embden J D, Fine P E. The effect of age and study duration on the relationship between ‘clustering’ of DNA fingerprint patterns and the proportion of tuberculosis disease attributable to recent transmission.  Epidemiol Infect. 2001;  126 43-62
  • 50 Groenen P M, Bunschoten A E, van Soolingen D, van Embden J D. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method.  Mol Microbiol. 1993;  10 1057-1065
  • 51 Bauer J, Andersen A B, Kremer K, Miorner H. Usefulness of spoligotyping To discriminate IS6110 low-copy-number Mycobacterium tuberculosis complex strains cultured in Denmark.  J Clin Microbiol. 1999;  37 2602-2606
  • 52 Mazars E, Lesjean S, Banuls A L et al.. High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology.  Proc Natl Acad Sci U S A. 2001;  98 1901-1906
  • 53 van Rie A, Warren R, Richardson M et al.. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment.  N Engl J Med. 1999;  341 1174-1179
  • 54 Small P M, Shafer R W, Hopewell P C et al.. Exogenous reinfection with multidrug-resistant Mycobacterium tuberculosis in patients with advanced HIV infection.  N Engl J Med. 1993;  328 1137-1144
  • 55 Caminero J A, Pena M J, Campos-Herrero M I et al.. Exogenous reinfection with tuberculosis on a European island with a moderate incidence of disease.  Am J Respir Crit Care Med. 2001;  163(3 Pt 1) 717-720
  • 56 Canetti G, Sutherland I, Svandova E. Endogenous reactivation and exogenous reinfection: their relative importance with regard to the development of non-primary tuberculosis.  Bull Int Union Tuberc. 1972;  47 116-134
  • 57 Stead W W. Pathogenesis of a first episode of chronic pulmonary tuberculosis in man: recrudescence of residuals of the primary infection or exogenous reinfection?.  Am Rev Respir Dis. 1967;  95 729-745
  • 58 Styblo K. Recent advances in epidemiological research in tuberculosis.  Adv Tuberc Res. 1980;  20 1-63
  • 59 Vynnycky E, Fine P E. The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection.  Epidemiol Infect. 1997;  119 183-201
  • 60 Romeyn J A. Exogenous reinfection in tuberculosis.  Am Rev Respir Dis. 1970;  101 923-927
  • 61 de Boer A S, van Soolingen D. Recurrent tuberculosis due to exogenous reinfection.  N Engl J Med. 2000;  342 1050-1051
  • 62 Fine P E, Small P M. Exogenous reinfection in tuberculosis.  N Engl J Med. 1999;  341 1226-1227
  • 63 Stead W W, Bates J H. Recurrent tuberculosis due to exogenous reinfection.  N Engl J Med. 2000;  342 1050 , author reply 1051
  • 64 Sonnenberg P, Murray J, Glynn J R, Shearer S, Kambashi B, Godfrey-Faussett P. HIV-1 and recurrence, relapse, and reinfection of tuberculosis after cure: a cohort study in South African mineworkers.  Lancet. 2001;  358 1687-1693
  • 65 Jasmer R M, Bozeman L, Schwartzman K et al.. Recurrent tuberculosis in the United States and Canada: relapse or reinfection?.  Am J Respir Crit Care Med. 2004;  170 1360-1366
  • 66 Verver S, Warren R M, Beyers N et al.. Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis.  Am J Respir Crit Care Med. 2005;  171 1430-1435
  • 67 Yew W W, Leung C C. Are some people not safer after successful treatment of tuberculosis?.  Am J Respir Crit Care Med. 2005;  171 1324-1325
  • 68 Bellamy R. Genome-wide approaches to identifying genetic factors in host susceptibility to tuberculosis.  Microbes Infect. 2006;  8 1119-1123
  • 69 Casanova J L, Schurr E, Abel L, Skamene E. Forward genetics of infectious diseases: immunological impact.  Trends Immunol. 2002;  23 469-472
  • 70 Warren R M, Victor T C, Streicher E M et al.. Patients with active tuberculosis often have different strains in the same sputum specimen.  Am J Respir Crit Care Med. 2004;  169 610-614
  • 71 Chiang C Y, Riley L W. Exogenous reinfection in tuberculosis.  Lancet Infect Dis. 2005;  5 629-636
  • 72 Lambert M L, Hasker E, Van Deun A, Roberfroid D, Boelaert M, Van der Stuyft P. Recurrence in tuberculosis: relapse or reinfection?.  Lancet Infect Dis. 2003;  3 282-287
  • 73 Dormans J, Burger M, Aguilar D et al.. Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different Mycobacterium tuberculosis genotypes in a BALB/c mouse model.  Clin Exp Immunol. 2004;  137 460-468
  • 74 Lopez B, Aguilar D, Orozco H et al.. A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes.  Clin Exp Immunol. 2003;  133 30-37
  • 75 Manabe Y C, Dannenberg Jr A M, Tyagi S K et al.. Different strains of Mycobacterium tuberculosis cause various spectrums of disease in the rabbit model of tuberculosis.  Infect Immun. 2003;  71 6004-6011
  • 76 Manca C, Tsenova L, Bergtold A et al.. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha /beta.  Proc Natl Acad Sci U S A. 2001;  98 5752-5757
  • 77 Manca C, Tsenova L, Barry III C E et al.. Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates.  J Immunol. 1999;  162 6740-6746
  • 78 Chacon-Salinas R, Serafin-Lopez J, Ramos-Payan R et al.. Differential pattern of cytokine expression by macrophages infected in vitro with different Mycobacterium tuberculosis genotypes.  Clin Exp Immunol. 2005;  140 443-449
  • 79 Manca C, Reed M B, Freeman S et al.. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis.  Infect Immun. 2004;  72 5511-5514
  • 80 Bifani P J, Mathema B, Kurepina N E, Kreiswirth B N. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains.  Trends Microbiol. 2002;  10 45-52
  • 81 Zhang M, Gong J, Yang Z, Samten B, Cave M D, Barnes P F. Enhanced capacity of a widespread strain of Mycobacterium tuberculosis to grow in human macrophages.  J Infect Dis. 1999;  179 1213-1217
  • 82 Yang Z, Barnes P F, Chaves F et al.. Diversity of DNA fingerprints of Mycobacterium tuberculosis isolates in the United States.  J Clin Microbiol. 1998;  36 1003-1007
  • 83 Reed M B, Domenech P, Manca C et al.. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response.  Nature. 2004;  431 84-87
  • 84 Tsenova L, Ellison E, Harbacheuski R et al.. Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli.  J Infect Dis. 2005;  192 98-106
  • 85 Gutacker M M, Smoot J C, Migliaccio C A et al.. Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains.  Genetics. 2002;  162 1533-1543
  • 86 Reed M B, Gagneux S, Deriemer K, Small P M, Barry III C E. The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated.  J Bacteriol. 2007;  189 2583-2589
  • 87 van Crevel R, Nelwan R H, de Lenne W et al.. Mycobacterium tuberculosis Beijing genotype strains associated with febrile response to treatment.  Emerg Infect Dis. 2001;  7 880-883
  • 88 Caws M, Thwaites G, Stepniewska K et al.. Beijing genotype of Mycobacterium tuberculosis is significantly associated with human immunodeficiency virus infection and multidrug resistance in cases of tuberculous meningitis.  J Clin Microbiol. 2006;  44 3934-3939
  • 89 Thwaites G E, Chau T T, Caws M et al.. Isoniazid resistance, mycobacterial genotype and outcome in Vietnamese adults with tuberculous meningitis.  Int J Tuberc Lung Dis. 2002;  6 865-871
  • 90 Caws M, Thwaites G, Dunstan S et al.. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis .  PLoS Pathog. 2008;  4 e1000034
  • 91 Ramaswamy S, Musser J M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update.  Tuber Lung Dis. 1998;  79 3-29
  • 92 Maus C E, Plikaytis B B, Shinnick T M. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis .  Antimicrob Agents Chemother. 2005;  49 571-577
  • 93 Rengarajan J, Sassetti C M, Naroditskaya V, Sloutsky A, Bloom B R, Rubin E J. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria.  Mol Microbiol. 2004;  53 275-282
  • 94 Xu C, Kreiswirth B N, Sreevatsan S, Musser J M, Drlica K. Fluoroquinolone resistance associated with specific gyrase mutations in clinical isolates of multidrug-resistant Mycobacterium tuberculosis .  , [published erratum appears in J Infect Dis 1997 Apr;175(4):1027] J Infect Dis. 1996;  174 1127-1130
  • 95 Lutfey M, Della-Latta P, Kapur V et al.. Independent origin of mono-rifampin-resistant Mycobacterium tuberculosis in patients with AIDS.  Am J Respir Crit Care Med. 1996;  153 837-840
  • 96 Post F A, Willcox P A, Mathema B et al.. Genetic polymorphism in Mycobacterium tuberculosis isolates from patients with chronic multidrug-resistant tuberculosis.  J Infect Dis. 2004;  190 99-106
  • 97 Frieden T R, Sherman L F, Maw K L et al.. A multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiology and clinical outcomes.  JAMA. 1996;  276 1229-1235
  • 98 Sullivan E A, Kreiswirth B N, Palumbo L et al.. Emergence of fluoroquinolone-resistant tuberculosis in New York City.  Lancet. 1995;  345 1148-1150
  • 99 Munsiff S S, Nivin B, Sacajiu G, Mathema B, Bifani P, Kreiswirth B N. Persistence of a highly resistant strain of tuberculosis in New York City during 1990–1999.  J Infect Dis. 2003;  188 356-363
  • 100 Kaplan G, Post F A, Moreira A L et al.. Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity.  Infect Immun. 2003;  71 7099-7108
  • 101 Meacci F, Orru G, Iona E et al.. Drug resistance evolution of a Mycobacterium tuberculosis strain from a noncompliant patient.  J Clin Microbiol. 2005;  43 3114-3120
  • 102 Richardson M, Carroll N M, Engelke E et al.. Multiple Mycobacterium tuberculosis strains in early cultures from patients in a high-incidence community setting.  J Clin Microbiol. 2002;  40 2750-2754
  • 103 van Rie A, Victor T C, Richardson M et al.. Reinfection and mixed infection cause changing Mycobacterium tuberculosis drug-resistance patterns.  Am J Respir Crit Care Med. 2005;  172 636-642
  • 104 Espinal M A, Kim S J, Suarez P G et al.. Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries.  JAMA. 2000;  283 2537-2545
  • 105 Iseman M D, Madsen L A. Drug-resistant tuberculosis.  Clin Chest Med. 1989;  10 341-353
  • 106 Peloquin C A. Tuberculosis drug serum levels.  Clin Infect Dis. 2001;  33 584-585
  • 107 Peloquin C A, Nitta A T, Burman W J et al.. Low antituberculosis drug concentrations in patients with AIDS.  Ann Pharmacother. 1996;  30 919-925
  • 108 Victor T C, Jordaan A M, van Rie A et al.. Detection of mutations in drug resistance genes of Mycobacterium tuberculosis by a dot-blot hybridization strategy.  Tuber Lung Dis. 1999;  79 343-348
  • 109 Wallis R S, Patil S, Cheon S H et al.. Drug tolerance in Mycobacterium tuberculosis .  Antimicrob Agents Chemother. 1999;  43 2600-2606
  • 110 Domenech P, Reed M B, Barry III C E. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance.  Infect Immun. 2005;  73 3492-3501
  • 111 Boshoff H I, Reed M B, Barry III C E, Mizrahi V. DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis .  Cell. 2003;  113 183-193
  • 112 Pasca M R, Guglierame P, De Rossi E, Zara F, Riccardi G. MmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis .  Antimicrob Agents Chemother. 2005;  49 4775-4777
  • 113 Colditz G A, Brewer T F, Berkey C S et al.. Efficacy of BCG vaccine in the prevention of tuberculosis: meta-analysis of the published literature.  JAMA. 1994;  271 698-702
  • 114 Kaufmann S H. Recent findings in immunology give tuberculosis vaccines a new boost.  Trends Immunol. 2005;  26 660-667
  • 115 Grode L, Seiler P, Baumann S et al.. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guérin mutants that secrete listeriolysin.  J Clin Invest. 2005;  115 2472-2479
  • 116 Orme I M. Tuberculosis vaccines: current progress.  Drugs. 2005;  65 2437-2444
  • 117 Doherty T M, Andersen P. Vaccines for tuberculosis: novel concepts and recent progress.  Clin Microbiol Rev. 2005;  18 687-702
  • 118 Rhee J T, Piatek A S, Small P M et al.. Molecular epidemiologic evaluation of transmissibility and virulence of Mycobacterium tuberculosis .  J Clin Microbiol. 1999;  37 1764-1770
  • 119 Drobniewski F, Balabanova Y, Nikolayevsky V et al.. Drug-resistant tuberculosis, clinical virulence, and the dominance of the Beijing strain family in Russia.  JAMA. 2005;  293 2726-2731
  • 120 Tsenova L, Harbacheuski R, Sung N, Ellison E, Fallows D, Kaplan G. BCG vaccination confers poor protection against M. tuberculosis HN878-induced central nervous system disease.  Vaccine. 2007;  25 5126-5132
  • 121 Lipsitch M, O'Neill K, Cordy D et al.. Strain characteristics of Streptococcus pneumoniae carriage and invasive disease isolates during a cluster-randomized clinical trial of the 7-valent pneumococcal conjugate vaccine.  J Infect Dis. 2007;  196 1221-1227
  • 122 Anh D D, Borgdorff M W, Van L N et al.. Mycobacterium tuberculosis Beijing genotype emerging in Vietnam.  Emerg Infect Dis. 2000;  6 302-305
  • 123 Cooke G S, Hill A V. Genetics of susceptibility to human infectious disease.  Nat Rev Genet. 2001;  2 967-977
  • 124 Skamene E, Schurr E, Gros P. Infection genomics: Nramp1 as a major determinant of natural resistance to intracellular infections.  Annu Rev Med. 1998;  49 275-287
  • 125 Anderson R M, May R M. Infectious Diseases of Humans: Dynamics and Control. New York; Oxford University Press 1991
  • 126 Andersson D I, Levin B R. The biological cost of antibiotic resistance.  Curr Opin Microbiol. 1999;  2 489-493
  • 127 Timm J, Post F A, Bekker L G et al.. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients.  Proc Natl Acad Sci U S A. 2003;  100 14321-14326
  • 128 Theus S A, Cave M D, Eisenach K D. Intracellular macrophage growth rates and cytokine profiles of Mycobacterium tuberculosis strains with different transmission dynamics.  J Infect Dis. 2005;  191 453-460
  • 129 Burgos M, DeRiemer K, Small P M, Hopewell P C, Daley C L. Effect of drug resistance on the generation of secondary cases of tuberculosis.  J Infect Dis. 2003;  188 1878-1884
  • 130 Murray M. Determinants of cluster distribution in the molecular epidemiology of tuberculosis.  Proc Natl Acad Sci U S A. 2002;  99 1538-1543
  • 131 Blower S M, Chou T. Modeling the emergence of the ‘hot zones’: tuberculosis and the amplification dynamics of drug resistance.  Nat Med. 2004;  10 1111-1116
  • 132 Cohen T, Murray M. Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness.  Nat Med. 2004;  10 1117-1121
  • 133 Cohen T, Sommers B, Murray M. The effect of drug resistance on the fitness of Mycobacterium tuberculosis .  Lancet Infect Dis. 2003;  3 13-21
  • 134 Mariam D H, Mengistu Y, Hoffner S E, Andersson D I. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis .  Antimicrob Agents Chemother. 2004;  48 1289-1294
  • 135 Karunakaran P, Davies J. Genetic antagonism and hypermutability in Mycobacterium smegmatis .  J Bacteriol. 2000;  182 3331-3335
  • 136 Billington O J, McHugh T D, Gillespie S H. Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis .  Antimicrob Agents Chemother. 1999;  43 1866-1869
  • 137 Gagneux S, Long C D, Small P M, Van T, Schoolnik G K, Bohannan B J. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis .  Science. 2006;  312 1944-1946
  • 138 Middlebrook G. Isoniazid-resistance and catalase activity of tubercle bacilli; a preliminary report.  Am Rev Tuberc. 1954;  69 471-472
  • 139 Pym A S, Saint-Joanis B, Cole S T. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans.  Infect Immun. 2002;  70 4955-4960
  • 140 Gagneux S, Burgos M V, DeRiemer K et al.. Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis .  PLoS Pathog. 2006;  2 e61
  • 141 van Soolingen D, de Haas P E, van Doorn H R, Kuijper E, Rinder H, Borgdorff M W. Mutations at amino acid position 315 of the katG gene are associated with high-level resistance to isoniazid, other drug resistance, and successful transmission of Mycobacterium tuberculosis in the Netherlands.  J Infect Dis. 2000;  182 1788-1790
  • 142 Gandhi N R, Moll A, Sturm A W et al.. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa.  Lancet. 2006;  368 1575-1580
  • 143 Selander R K, Beltran P, Smith N H et al.. Genetic population structure, clonal phylogeny, and pathogenicity of Salmonella paratyphi B.  Infect Immun. 1990;  58 1891-1901
  • 144 Selander R K, Beltran P, Smith N H et al.. Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers.  Infect Immun. 1990;  58 2262-2275
  • 145 Levin B R, Bull J J. Short-sighted evolution and the virulence of pathogenic microorganisms.  Trends Microbiol. 1994;  2 76-81
  • 146 Smith N H, Kremer K, Inwald J et al.. Ecotypes of the Mycobacterium tuberculosis complex.  J Theor Biol. 2006;  239 220-225
  • 147 Marmiesse M, Brodin P, Buchrieser C et al.. Macro-array and bioinformatic analyses reveal mycobacterial 'core' genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex.  Microbiology. 2004;  150(Pt 2) 483-496
  • 148 Ernst J D, Trevejo-Nunez G, Banaiee N. Genomics and the evolution, pathogenesis, and diagnosis of tuberculosis.  J Clin Invest. 2007;  117 1738-1745

Barun MathemaM.P.H. 

Public Health Research Institute, University of Medicine and Dentistry of New Jersey (UMDNJ)

225 Warren St., Newark, NJ 07103

Email: mathemba@umdnj.edu