Horm Metab Res 2008; 40(9): 640-644
DOI: 10.1055/s-0028-1083811
Review

© Georg Thieme Verlag KG Stuttgart · New York

Possible Molecular Mechanisms by which Angiotensin II Type 1 Receptor Blockers (ARBs) Prevent the Development of Atrial Fibrillation in Insulin Resistant Patients

S.-I. Yamagishi 1 , T. Matsui 1 , K. Nakamura 1
  • 1Department of Medicine, Division of Cardiovascular Medicine, Kurume University School of Medicine, Kurume, Japan
Further Information

Publication History

received 19.03.2007

accepted 30.10.2007

Publication Date:
15 September 2008 (online)

Abstract

Atrial fibrillation (AF) is the most common disorder of cardiac rhythm and is responsible for substantial morbidity and mortality in general population. A recent community-based observational study revealed that diabetes and/or hypertension were associated with the development of AF. However, there is no definite evidence to show that patients with type 1 diabetes have an increased risk for the development of AF. These findings suggest that hyperglycemia per se may not explain the positive association between diabetes and AF. Growing body of evidence supports the presence of insulin resistance as the fundamental pathophysiological disturbance responsible for the metabolic syndrome, a constellation of metabolic disorders such as hypertension, dyslipidemia, and obesity that raise the risk for diabetes mellitus and cardiovascular diseases. Further, several clinical trials have shown that the renin-angiotensin system (RAS) plays an important role in the pathogenesis of insulin resistance. These observations suggest that insulin resistance could account for the increased risk for AF in the patients with diabetes and/or hypertension and that the interruption of the RAS may be a promising therapeutic strategy for preventing the development of AF. In the first part of this paper, we review clinical studies to support the concept that angiotensin II type 1 receptor blockers (ARBs) could prevent the development of AF in insulin resistant patients and discuss the possible underlying mechanisms. In the second part, we discuss the potential utility of telmisartan, a unique ARB with peroxisome proliferator-activated receptor-γ (PPAR-γ)-modulating activity, for blocking the development of AF in patients with insulin resistance.

References

  • 1 Kannel WB, Wolf PA, Benjamin EJ, Levy D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates.  Am J Cardiol. 1998;  82 2N-9N
  • 2 Ferro JM. Atrial fibrillation and cardioembolic stroke.  Minerva Cardioangiol. 2004;  52 111-124
  • 3 Mehta NN, Greenspon AJ. Atrial fibrillation. Rhythm versus rate control.  Geriatrics. 2003;  58 39-44
  • 4 Ortgren CJ, Merlo J, Rastam L, Lindblad U. Atrial fibrillation and its association with type 2 diabetes and hypertension in a Swedish community.  Diabetes Obes Metab. 2004;  6 367-374
  • 5 Hauner H. Managing type 2 diabetes mellitus in patients with obesity.  Treat Endocrinol. 2004;  3 223-232
  • 6 Frost L, Hune LJ, Vestergaard P. Overweight and obesity as risk factors for atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study.  Am J Med. 2005;  118 489-495
  • 7 Cersosimo E, Defronzo RA. Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases.  Diabetes Metab Res Rev. 2006;  22 423-436
  • 8 Meerarani P, Badimon JJ, Zias E, Fuster V, Moreno PR. Metabolic syndrome and diabetic atherothrombosis: implications in vascular complications.  Curr Mol Med. 2006;  6 501-514
  • 9 Cooper ME, Tikellis C, Thomas MC. Preventing diabetes in patients with hypertension: one more reason to block the renin-angiotensin system.  J Hypertens. 2006;  24 ((Suppl)) S57-S63
  • 10 Giacchetti G, Sechi LA, Rilli S, Carey RM. The renin-angiotensin-aldosterone system, glucose metabolism and diabetes.  Trends Endocrinol Metab. 2005;  16 120-126
  • 11 Sharma AM. The obese patient with diabetes mellitus: from research targets to treatment options.  Am J Med. 2006;  119 S17-S23
  • 12 Yamagishi S, Nakamura K, Jinnouchi Y, Takenaka K, Imaizumi T. Molecular mechanisms for vascular injury in the metabolic syndrome.  Drugs Exp Clin Res. 2005;  31 123-127
  • 13 Scheen AJ. Prevention of type 2 diabetes mellitus through inhibition of the Renin-Angiotensin system.  Drugs. 2004;  64 2537-2565
  • 14 Brenner BM, Cooper ME, Zeeuw D de, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S. RENAAL Study Investigators . Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy.  N Engl J Med. 2001;  345 861-869
  • 15 Granger CB, MacMurray JJ, Yusuf S, Held P, Michelson EL, Olofsson B, Ostergren J, Pfeffer MA, Swedberg K. CHARM Investigators and Committees . Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial.  Lancet. 2003;  362 772-776
  • 16 Ball SG. Benefits of blood pressure reduction in diabetic patients.  J Hypertens. 2003;  21 S31-S36
  • 17 Strazzullo P, Galletti F. Impact of the renin-angiotensin system on lipid and carbohydrate metabolism.  Curr Opin Nephrol Hypertens. 2004;  13 325-332
  • 18 Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity.  Hypertension. 2004;  43 993-1002
  • 19 Yamagishi S, Nakamura K. Telmisartan, its potential therapeutic implications in cardiometabolic disorders.  Recent Patents Cardiovasc Drug Discovery. 2006;  1 79-83
  • 20 Schupp M, Janke J, Clasen R, Unger T, Kintscher U. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity.  Circulation. 2004;  109 2054-2057
  • 21 Yamagishi S, Takeuchi M. Telmisartan is a promising cardiometabolic sartan due to its unique PPAR-gamma-inducing property.  Med Hypothese. 2005;  64 476-478
  • 22 Yamagishi S, Takenaka K, Inoue H. Role of insulin-sensitizing property of telmisartan, a commercially available angiotensin II type 1 receptor blocker in preventing the development of atrial fibrillation.  Med Hypothese. 2006;  66 118-120
  • 23 Healey JS, Baranchuk A, Crystal E, Morillo CA, Garfinkle M, Yusuf S, Connolly SJ. Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis.  J Am Coll Cardiol. 2005;  45 1832-1839
  • 24 Kostis JB, Sanders M. The association of heart failure with insulin resistance and the development of type 2 diabetes.  Am J Hypertens. 2005;  18 731-737
  • 25 Rewers M, Zaccaro D, D’Agostino R, Haffner S, Saad MF, Selby JV, Bergman R, Savage P. Insulin Resistance Atherosclerosis Study Investigators . Insulin sensitivity, insulinemia, and coronary artery disease: the Insulin Resistance Atherosclerosis Study.  Diabetes Care. 2004;  27 781-787
  • 26 Maggioni AP, Latini R, Carson PE, Singh SN, Barlera S, Glazer R, Masson S, Cere E, Tognoni G, Cohn JN. Val-HeFT Investigators . Valsartan reduces the incidence of atrial fibrillation in patients with heart failure: results from the Valsartan Heart Failure Trial (Val-HeFT).  Am Heart J. 2005;  149 548-557
  • 27 MacMurray JJ, Young JB, Dunlap ME, Granger CB, Hainer J, Michelson EL, Earle S, Olofsson B, Ostergren J, Yusuf S, Swedberg K, Pfeffer MA. CHARM Investigators . Relationship of dose of background angiotensin-converting enzyme inhibitor to the benefits of candesartan in the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM)-Added trial.  Am Heart J. 2006;  151 985-991
  • 28 Wachtell K, Lehto M, Gerdts E, Olsen MH, Hornestam B, Dahlof B, Ibsen H, Julius S, Kjeldsen SE, Lindholm LH, Nieminen MS, Devereux RB. Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: the Losartan Intervention For End Point Reduction in Hypertension (LIFE) study.  J Am Coll Cardiol. 2005;  45 712-719
  • 29 Madrid AH, Bueno MG, Rebollo JM, Marin I, Pena G, Bernal E, Rodriguez A, Cano L, Cano JM, Cabeza P, Moro C. Use of irbesartan to maintain sinus rhythm in patients with long-lasting persist fibrillation: a prospective and randomized study.  Circulation. 2002;  106 331-336
  • 30 Patlolla V, Alsheikh-Ali AA, Al-Ahmad AM. The renin-angiotensin system: a therapeutic target in atrial fibrillation.  Pacing Clin Electrophysiol. 2006;  29 1006-1012
  • 31 Gaspo R, Bosch RF, Talajic M, Nattel S. Functional mechanisms underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model.  Circulation. 1997;  95 4027-4035
  • 32 Yu WC, Chen SA, Lee SH, Tai CT, Feng AN, Kuo BI, Ding YA, Chang MS. Tachycardia-induced change of atrial refractory period in humans: rate dependency and effects of antiarrhythmic drugs.  Circulation. 1998;  97 2331-2337
  • 33 Nattel S, Li D. Ionic remodeling in the heart: pathophysiological significance and new therapeutic opportunities for atrial fibrillation.  Cir Res. 2000;  67 440-447
  • 34 Nakashima H, Kumagai K, Urata H, Gondo N, Ideishi M, Arakawa K. Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation.  Circulation. 2000;  101 2612-2617
  • 35 Dilaveris P, Giannopoulos G, Synetos A, Stefanadis C. Heart rate lowering by inhibition of the pacemaker current: a new therapeutic perspective in cardiovascular disease.  Curr Drug Target Cardiovasc Hematol Disord. 2005;  5 387-403
  • 36 Li D, Fareh S, Leung TK, Nattel S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort.  Cir Res. 1999;  100 87-95
  • 37 Eickels M van, Grohe C, Lobbert K, Stimpel M, Vetter H. Angiotensin converting enzyme inhibitors block mitogenic signalling pathways in rat cardiac fibroblasts.  Naunyn Schmiedebergs Arch Pharmacol. 1999;  359 394-399
  • 38 Goette A, Staack T, Rocken C, Arndt M, Geller JC, Huth C, Ansorge S, Klein HU, Lendeckel U. Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation.  J Am Coll Cardiol. 2000;  35 1669-1677
  • 39 Kumagai K, Nakashima H, Urata H, Gondo N, Arakawa K, Saku K. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation.  J Am Coll Cardiol. 2003;  41 2197-2204
  • 40 Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa P. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio inthe cell.  J Clin Invest. 1998;  101 1326-1342
  • 41 Cardin S, Li D, Thorin-Trescases N, Leung TK, Thorin E, Nattel S. Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin-dependent and -independent pathways.  Cardiovasc Res. 2003;  60 315-325
  • 42 Korantzopoulos P, Kolettis TM, Galaris D, Goudevenos JA. The role of oxidative stress in the pathogenesis and perpetuation of atrial fibrillation.  Int J Cardiol. 2007;  115 135-143
  • 43 Carnes CA, Chung MK, Nakayama T, Nakayama H, Baliga RS, Piao S, Kanderian A, Pavia S, Hamlin RL, MacCarthy PM, Bauer JA, Wagoner DR Van. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation.  Cir Res. 2001;  89 E32-E38
  • 44 Dudley Jr SC, Hoch NE, MacCann LA, Honeycutt C, Diamandopoulos L, Fukai T, Harrison DG, Dikalov SI, Langberg J. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases.  Circulation. 2005;  112 1266-1273
  • 45 Deroubaix E, Folliguet T, Rucker-Martin C, Dinanian S, Boixel C, Validire P, Daniel P, Capderou A, Hatem SN. Moderate and chronic hemodynamic overload of sheep atria induces reversible cellular electrophysiologic abnormalities and atrial vulnerability.  J Am Coll Cardiol. 2004;  44 1918-1926
  • 46 Ueng KC, Tsai TP, Yu WC, Tsai CF, Lin MC, Chan KC, Chen CY, Wu DJ, Lin CS, Chen SA. Use of enalapril to facilitate sinus rhythm maintenance after external cardioversion of long- standing persistent atrial fibrillation. Results of a prospective and controlled study.  Eur Heart J. 2003;  24 2090-2098
  • 47 Kakuta H, Sudoh K, Sasamata M, Yamagishi S. Telmisartan has the strongest binding affinity to angiotensin II type 1 receptor: comparison with other angiotensin II type 1 receptor blockers.  Int J Clin Pharm Res. 2005;  25 41-46
  • 48 Hosono T, Mizuguchi H, Katayama K, Koizumi N, Kawabata K, Yamaguchi T, Nakagawa S, Watanabe Y, Mayumi T, Hayakawa T. RNA interference of PPARgamma using fiber-modified adenovirus vector efficiently suppresses preadipocyte-to-adipocyte differentiation in 3T3-L1 cells.  Gene. 2005;  348 157-165
  • 49 Rosen ED. The transcriptional basis of adipocyte development.  Prostaglandins Leukot Essent Fatty Acids. 2005;  73 31-34
  • 50 Takano H, Hasegawa H, Zou Y, Komuro I. Pleiotropic actions of PPAR gamma activators thiazolidinediones in cardiovascular diseases.  Curr Pharm Des. 2004;  10 2779-2286
  • 51 Marx N, Duez H, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells.  Cir Res. 2004;  94 1168-1178
  • 52 Yamagishi S, Nakamura K, Matsui T. Potential utility of telmisartan, an angiotensin II type 1 receptor blocker with peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity for the treatment of cardiometabolic disorders.  Curr Mol Med. 2007;  7 463-469
  • 53 Nagel JM, Tietz AB, Goke B, Parhofer KG. The effect of telmisartan on glucose and lipid metabolism in nondiabetic, insulin-resistant subjects.  Metabolism. 2006;  55 1149-1154
  • 54 Benndorf RA, Rudolph T, Appel D, Schwedhelm E, Maas R, Schulze F, Silberhorn E, Boger RH. Telmisartan improves insulin sensitivity in nondiabetic patients with essential hypertension.  Metabolism. 2006;  55 1159-1164
  • 55 Miura Y, Yamamoto N, Tsunekawa S, Taguchi S, Eguchi Y, Ozaki N, Oiso Y. Replacement of valsartan and candesartan by telmisartan in hypertensive patients with type 2 diabetes: metabolic and antiatherogenic consequences.  Diabetes Care. 2005;  28 757-758
  • 56 Vitale C, Mercuro G, Castiglioni C, Cornoldi A, Tulli A, Fini M, Volterrani M, Rosano GM. Metabolic effect of telmisartan and losartan in hypertensive patients with metabolic syndrome.  Cardiovasc Diabetol. 2005;  4 6
  • 57 Pershadsingh HA, Kurtz TW. Insulin-sensitizing effects of telmisartan: implications for treating insulin-resistant hypertension and cardiovascular disease.  Diabetes Care. 2004;  27 1015
  • 58 Zimmermann M, Unger T. Challenges in improving prognosis and therapy: the Ongoing Telmisartan Alone and in Combination with Ramipril Global End point Trial programme.  Expert Opin Pharmacother. 2004;  5 1201-1208

Correspondence

S.-I. YamagishiMD, PhD 

Department of Medicine

Division of Cardiovascular Medicine

Kurume University School of Medicine

Kurume 830-0011

Japan

Phone: +81/942/31 75 80

Fax: +81/942/31 77 07

Email: shoichi@med.kurume-u.ac.jp