RSS-Feed abonnieren
DOI: 10.1055/s-0028-1083529
A New One-Pot, Three-Component Synthesis of 2,3,5-Substituted or Annulated-6-(Methylthio)pyridines
Publikationsverlauf
Publikationsdatum:
01. Oktober 2008 (online)
Abstract
A new one-pot, three-component synthesis of 2,3,5-substituted (or 2,3-annulated)-6-(methylthio)pyridines by reacting acyclic or cyclic active methylene ketones, ammonium acetate, and bis(methylthio)acrolein (1) or its 2-phenyl analogue 8 (as 3-carbon-1,3-biselectrophilic components) in the presence of either AcOH-TFA (4:1) or ZnBr2 (or ZnI2) catalysts has been reported.
Key words
pyridines - cycloannulation - one-pot - three-component synthesis - bis(methylthio)acrolein - ammonium acetate
-
1a
Balasubramaniam M.Keay JG. In Comprehensive Heterocyclic Chemistry II Vol. 5:Katritzky AR.Rees CW.Scriven EFV. Pergamon Press; Oxford: 1996. Chap. 5.06. p.245 -
1b
Michael JP. Nat. Prod. Rep. 1997, 14: 605 - 2 Review:
Henry GD. Tetrahedron 2004, 60: 6043 ; and references therein - 3
Matolcsy G. Pesticide Chemistry Elsevier Scientific; Amsterdam / Oxford: 1998. p.427-430 -
4a
Pharmaceutical Chemistry. Drug Synthesis
Vol
1:
Roth HJ.Kleeman A. Prentice Hall Europe; London: 1988. p.407 -
4b
MDDR; MDL Drug Data Registry; by MDL Informations System, Inc; San Leandro, California USA.
- 5
Li A.-H.Moro S.Forsyth N.Melman N.Ji X.-D.Jacobson KA. J. Med. Chem. 1999, 42: 706 - 6
Scriven E.Berry D. Speciality Chem. Mag. 2001, May 24 -
7a
Heller M.Schubert US. Eur. J. Org. Chem. 2003, 947 -
7b
Kozhevnikov VN.Kozhevnikov DN.Nikitina TV.Rusinov VL.Chupakhin OL.Zabel M.König B. J. Org. Chem. 2003, 68: 2882 -
7c
Branowska D. Synthesis 2003, 2096 ; and references therein -
8a
Fischer M.Troschutz R. Synthesis 2003, 1603 -
8b
Keuper R.Risch N. Eur. J. Org. Chem. 1998, 2609 -
8c
Risch N.Esser A. Synthesis 1988, 337 -
8d
Sharma U.Ahmed S.Boruah RC. Tetrahedron Lett. 2000, 41: 3493 -
8e
Chetia A.Longchar M.Lekhok KC.Boruah RC. Synlett 2004, 1309 -
8f
Ramesh SS.Douglas DY.Alexander D. Chem. Commun. 2006, 1313 -
9a
Hedge VB.Renga JM.Owen JM. Tetrahedron Lett. 2001, 42: 1847 -
9b
Thomas AD.Asokan CV. Tetrahedron Lett. 2002, 43: 2273 -
9c
Bhandari A.Li B.Gallop MA. Synthesis 1999, 1951 -
9d
Parthasarathy K.Jeganmohan M.Cheng C.-H. Org. Lett. 2008, 10: 325 -
9e
Kase K.Goswami A.Ohtaki K.Tanabe E.Saino N.Okamoto S. Org. Lett. 2007, 9: 991 -
9f
Lu J.-Y.Arndt H.-D. J. Org. Chem. 2007, 72: 4205 -
9g
Gehre A.Stanforth SP.Tarbit B. Tetrahedron Lett. 2007, 48: 6974 -
10a
Moody CJ.Bagley MC. Synlett 1998, 361 -
10b
Moody CJ.Bagley MC. Chem. Commun. 1998, 2049 -
10c
Bagley MC.Bashford KE.Hesketh CL.Moody CJ. J. Am. Chem. Soc. 2000, 122: 3301 -
10d
Bagley MC.Dale JW.Xiong X.Bower J. Org. Lett. 2003, 5: 4421 - 11
Bashford KE.Burton MB.Cameron S.Cooper AL.Hogg RD.Kane PD.MacManus DA.Matrunola CA.Moody CJ.Robertson AAB.Warne MR. Tetrahedron Lett. 2003, 44: 1627 -
12a
Bagley MC.Dale JW.Bower J. Synlett 2001, 1149 -
12b
Bagley MC.Dale JW.Hughes DD.Ohnesorge M.Phillips NG.Bower J. Synlett 2001, 1523 -
12c
Bagley MC.Singh N. Synlett 2002, 1718 -
12d
Bagley MC.Hughes DD.Sabo HM.Taylor PH.Xiong X. Synlett 2003, 1443 -
12e
Xiong X.Bagley MC.Chapaneri K. Tetrahedron Lett. 2004, 45: 6121 -
12f
Bagley MC.Brace C.Dale JW.Ohnesorge M.Phillips NG.Xiong X.Bower J. J. Chem. Soc., Perkin Trans. 1 2002, 1663 -
12g
Xiong X.Bagley MC.Chapaneri K. Tetrahedron Lett. 2004, 45: 6121 -
12h
Bagley MC.Glover C.Chevis D. Synlett 2005, 649 -
12i
Bagley MC.Glover C.Merritt EA.Xiong X. Synlett 2004, 811 -
13a Review:
Bagley MC.Glover C.Merritt EA. Synlett 2007, 2459 -
13b
Bagley MC.Dale JW.Bower J. Chem. Commun. 2002, 1682 -
13c
Bagley MC.Chapaneri K.Dale JW.Xiong X.Bower J. J. Org. Chem. 2005, 70: 1389 -
13d
Bagley MC.Dale JW.Bower J. Chem. Commun. 2002, 1682 -
13e
Merritt EA.Bagley MC. Synlett 2007, 954 - 14
Adlington RM.Baldwin JE.Catterick D.Pritchard GJ.Tang LT. J. Chem. Soc., Perkin Trans. 1 2000, 2311 ; and references therein -
15a
Marcoux J.-F.Corley EG.Rossen K.Pye P.Wu J.Robbins MA.Davies IW.Larsen RD.Reider PJ. Org. Lett. 2000, 2: 2339 -
15b
Davies IW.Marcoux J.-F.Reider PJ. Org. Lett. 2001, 3: 209 -
15c
Davies IW.Marcoux J.-F.Corley EG.Journet M.Cai D.-W.Palucki M.Wu J.Larsen RD.Rossen K.Pye PJ.DiMichele L.Dormer P.Reider PJ. J. Org. Chem. 2000, 65: 8415 - 16 Review:
Lloyd D.McNab H. Angew. Chem., Int. Ed. Engl. 1976, 15: 459 -
17a
Katritzky AR.Belyakov SA.Sorochinsky AE.Henderson SA.Chen J. J. Org. Chem. 1997, 62: 6210 -
17b
Katritzky AR.Abdel-Fattah AAA.Tymoshenko DO.Essawy SA. Synthesis 1999, 2114 - Reviews:
-
18a
Ila H.Junjappa H.Mohanta PK. In Progress in Heterocyclic Chemistry Vol. 13:Gribble GW.Gilchrist TL. Pergamon; Oxford: 2001. Chap. 1. p.1 -
18b
Junjappa H.Ila H.Asokan CV. Tetrahedron 1990, 46: 5423 -
18c
Junjappa H.Ila H. Phosphorus, Sulfur Silicon Relat. Elem. 1994, 95: 35 -
18d
Ila H.Junjappa H.Barun O. J. Organomet. Chem. 2001, 624: 34 - Recent papers:
-
19a
Kumar S.Ila H.Junjappa H. Tetrahedron 2007, 63: 10067 -
19b
Misra NC.Panda K.Ila H.Junjappa H. J. Org. Chem. 2007, 72: 1246 -
19c
Peruncheralathan S.Khan TA.Ila H.Junjappa H.
J. Org. Chem. 2005, 70: 10030 -
19d
Venkatesh C.Singh B.Mahata PK.Ila H.Junjappa H. Org. Lett. 2005, 7: 9644 -
19e
Panda K.Venkatesh C.Ila H.Junjappa H. Eur. J. Org. Chem. 2005, 2045 -
19f
Peruncheralathan S.Khan TA.Ila H.Junjappa H. Tetrahedron 2004, 60: 3457 -
19g
Sundarum GSM.Venkatesh C.Syam Kumar UK.Ila H.Junjappa H. J. Org. Chem. 2004, 69: 5760 -
20a
Gupta AK.Ila H.Junjappa H. Tetrahedron 1990, 46: 3703 -
20b
Satyanarayana J.Ila H.Junjappa H. Synthesis 1991, 889 -
21a
Gupta AK.Ila H.Junjappa H. Tetrahedron Lett. 1988, 29: 6633 -
21b
Gupta AK.Ila H.Junjappa H. Tetrahedron 1990, 46: 2572 -
22a
Potts KT.Cipullo MJ.Ralli P.Theodoridis G.
J. Am. Chem. Soc. 1981, 103: 3584 -
22b
Potts KT.Cipullo MJ.Ralli P.Theodoridis G. J. Org. Chem. 1982, 47: 3027 - 23
Mahata PK.Barun O.Ila H.Junjappa H. Synlett 2000, 1345 - 24
Panda K.Siddiqui I.Mahata PK.Ila H.Junjappa H. Synlett 2004, 449 - 27
Rudorf WD. J. Prak. Chem. 1986, 328: 321
References and Notes
The structures of all newly synthesized compounds were confirmed with the help of spectral and analytical data.
26
General Procedure
for One-Pot, Three-Component Synthesis of 2,3,5-Substituted or 2,3-Annulated-6-(methylthio)pyridines
4, 7, 9, and 10cProcedure A
A solution of
appropriate ketone (1.0 mmol), bis(methyl-thio)acrolein (1, 3.0 mmol) or 2-phenyl-3-bis(methyl-thio)acrolein
(8, 1.1 mmol), and NH4OAc (20
mol) in AcOH-TFA (5 mL, 4:1) was heated with stirring at
110 ˚C for 8-10 h (monitored by TLC). The mixture
was then neutralized with sat. NaHCO3 solution (25 mL)
and extracted with CH2Cl2 (3 × 15
mL). The combined organic extracts were washed with H2O
(2 × 50 mL), brine (50 mL), dried (Na2SO4),
and evaporated under reduced pressure to afford crude product which
was purified by column chromatography over SiO2 using
EtOAc-hexane (1:9) as eluent.
Procedure
B
A mixture of appropriate ketone (1.0 mmol), bis(methyl-thio)acrolein
(1, 3.0 mmol) or 2-phenyl-3-bis(methyl-thio)acrolein
(8, 1.1 mmol), NH4OAc (20 mol),
and ZnBr2 or ZnI2 (15 mol%) was heated
in a sealed tube at 110 ˚C for
5-8
h (monitored by TLC). The residue was partitioned between sat. NaHCO3 solution
(30 mL) and CHCl3 (30 mL), and was extracted with CH2Cl2 (3 × 15
mL). The organic layer was washed with H2O (2 × 50
mL), brine (50 mL), dried (Na2SO4), and evaporated
under reduced pressure to give crude product which was purified
by column chromatography on SiO2 using EtOAc-hexane
(1:9) as eluent.
2-(4-Methoxyphenyl)-6-methylthiopyridine
(4a)
Yield 63% (0.15 g); white solid; mp.
81-82 ˚C; R
f
= 0.52 (hexane-EtOAc,
9:1). IR (KBr): 2919, 1602, 1555, 1448 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.99 (d, J = 9.0 Hz, 2
H, ArH), 7.49 (t, J = 7.8
Hz, 1 H, ArH), 7.35 (d, J = 7.6
Hz, 1 H, ArH), 7.05 (d, J = 7.8
Hz, 1 H, ArH), 6.92 (d, J = 8.8 Hz,
2 H, ArH), 3.85 (s, 3 H, OMe), 2.64 (s, 3 H, SMe). ¹³C NMR
(100 MHz, CDCl3): δ = 160.5, 159.1,
156.2, 136.6, 131.3, 128.1, 119.2, 114.8, 114.0, 55.3, 13.2. ESI-HRMS:
m/z calcd for C13H14NOS [M + H]+:
232.0796; found: 232.0794.
2,3-Bis(4-methoxyphenyl)-6-methylthiopyridine
(4c)
Yield 63% (0.21 g); white solid; mp
161-162 ˚C; R
f
= 0.50 (hexane-EtOAc,
19.1). IR (KBr): 2950, 1684, 1509 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 7.49 (d, J = 8.1 Hz,
1 H, ArH), 7.35 (dd, J = 6.7,
2.1 Hz, 2 H, ArH), 7.14 (d, J = 8.3
Hz, 1 H, ArH), 7.07 (dd, J = 6.6,
2.2 Hz, 2 H, ArH), 6.74-6.81 (m, 4 H, ArH), 3.78 (s, 3
H, OMe), 3.77 (s, 3 H, OMe), 2.62 (s, 3 H, SMe). ¹³C
NMR (100 MHz, CDCl3): δ = 159.7, 158.8, 157.5,
155.1, 139.7, 131.5, 131.4, 131.2, 130.5, 130.4, 119.3, 113.9, 113.3,
55.2, 55.1, 13.7. MS: m/z (%) = 337(100) [M+].
Anal. Calcd (%) for C20H19NO2S
(337.43): C, 71.19; H, 5.68; N, 4.15. Found: C, 71.23; H, 5.70;
N, 4.18.
2-Methylthioindeno[1,2-
b
]pyridin-5-one
(7a)
Yield 78% (0.18 g); pale yellow solid;
mp 145-146 ˚C; R
f
= 0.54 (hexane-EtOAc,
9:1); IR (KBr): 2920, 1720, 1575, 1401 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.57 (d, J = 7.3 Hz,
1 H, ArH), 7.49 (d, J = 7.3
Hz, 1 H, ArH), 7.46 (d, J = 8.0
Hz, 1 H, ArH), 7.37 (t, J = 7.4
Hz, 1 H, ArH), 7.24 (t, J = 7.4
Hz, 1 H, ArH), 6.84 (d, J = 8.1
Hz, 1 H, ArH), 2.51 (s, 3 H, SMe). ¹³C
NMR (100 MHz, CDCl3): δ = 191.1, 167.1,
165.1, 142.7, 135.0, 134.4, 130.7, 130.3, 123.5, 123.4, 120.5, 119.8,
13.3. MS: m/z (%) = 227(100) [M+]. Anal.
Calcd (%) for C13H9NOS (227.28):
C, 68.70; H, 3.99; N, 6.16. Found: C, 68.76; H, 4.00; N, 6.18.
6-Methylthio-3,5-diphenyl-[2,3′]bipyridinyl
(9d)
Yield 64% (0.23 g); light yellow solid;
mp 160-161 ˚C; R
f
= 0.45 (hexane-EtOAc,
5:1). IR (KBr): 2916, 1575, 1445, 1377
cm-¹. ¹H NMR (400
MHz, CDCl3): δ = 8.77 (br s, 1 H, ArH),
8.50 (dd, J = 4.9,
1.4 Hz, 1 H, ArH), 7.71 (dt, J = 8.0, 1.9
Hz, 1 H, ArH), 7.55-7.52 (m, 2 H, ArH), 7.51 (s, 1 H, ArH),
7.50-7.40 (m, 3 H, ArH), 7.33-7.27 (m, 3 H, ArH), 7.23-7.20
(m, 2 H, ArH), 7.17-7.15 (m, 1 H, ArH), 2.60 (s, 3 H, SMe). ¹³C
NMR (100 MHz, CDCl3): δ = 156.6, 151.4, 150.9,
148.7, 139.1, 138.9, 137.4, 137.1, 135.3, 135.0, 131.7, 129.5, 129.1,
128.7, 128.5, 128.4, 127.5, 122.6, 13.8. MS: m/z (%) = 355(100) [M + 1],
354(60) [M+]. Anal. Calcd (%)
for C23H18N2S (354.46): C, 77.93;
H, 5.12; N, 7.90. Found: 77.97; H, 5.13; N, 7.93.
6-Methylthio-5-phenyl-[2,2′]bipyridinyl
(9i)
Yield 68% (0.19 g); colorless solid;
mp 100-101 ˚C; R
f
= 0.47
(hexane-EtOAc, 19:1). IR (KBr): 2916, 1546, 1428, 1354
cm-¹. ¹H NMR (400
MHz, CDCl3): δ = 8.71 (dd, J = 4.9, 0.74
Hz, 1 H, ArH), 8.54 (d, J = 8.1
Hz, 1 H, ArH), 8.27 (d, J = 7.8
Hz, 1 H, ArH), 7.88 (td, J = 7.7,
1.7 Hz, 1 H, ArH), 7.56 (d, J = 7.8
Hz, 1 H, ArH), 7.49-7.40 (m, 5 H, ArH), 7.37-7.34
(m, 1 H, ArH), 2.62 (s, 3 H, SMe). ¹³C NMR
(100 MHz, CDCl3): δ = 157.3, 155.2,
152.9, 148.3, 137.8, 137.3, 136.5, 129.1, 128.4, 128.3, 123.9, 121.4, 116.5,
13.8. MS: m/z (%):
279(100) [M + 1], 278(30). Anal. Calcd
(%) for C17H14N2S (278.37):
C, 73.35; H, 5.07; N, 10.06. Found: C, 73.32; H, 5.09; N, 10.09.
Comparable yields of pyridines 9 were obtained by using either ZnBr2 or ZnI2 catalyst.
29Lower yields of pyridines 4a-g with ZnBr2 (conditions B) catalyst at 110 ˚C are presumably due to the decomposition of bis(methylthio)acrolein(1) at higher temperature.
30The ¹H NMR of
all desulfurized compounds 11c,d, 12h,i displayed a low field signal between δ = 8.63-8.96 ppm due to
the pyridine H-6 proton which further confirmed the regiochemistry
of the products.
2,3-Bis(4-methoxyphenyl)pyridine
(11c)
Yield 93% (0.27 g); white solid; mp
82-83 ˚C; R
f
= 0.5 (hexane-EtOAc,
19:1). IR (KBr): 2935, 2838, 1607, 1511, 1429 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 8.63 (dd, J = 4.6, 1.7
Hz, 1 H, ArH), 7.67 (dd, J = 7.6,
1.7 Hz, 1 H, ArH), 7.31 (dd, J = 6.7,
2.1 Hz, 2 H, ArH), 7.29-7.26 (m, 1 H, ArH), 7.11 (dd, J = 6.7, 2.1
Hz, 2 H, ArH), 6.83 (dd, J = 6.8,
1.9 Hz, 2 H, ArH), 6.78 (dd, J = 6.8,
1.9 Hz, 2 H, ArH), 3.81 (s, 3 H, OMe), 3.79 (s, 3 H, OMe). ¹³C
NMR (100 MHz, CDCl3): δ = 159.2, 158.8,
156.7, 147.9, 138.4, 135.3, 132.8, 132.5, 131.1, 130.6, 121.6, 113.8,
113.3, 55.22, 55.18. MS: m/z (%) = 292(100) [M + 1],
291(40) [M+]. Anal. Calcd
(%) for C19H17NO2 (291.34):
C, 8.33; H, 5.88; N, 4.81. Found: C, 78.39; H, 5.90; N, 4.84.