Synlett 2008(17): 2647-2650  
DOI: 10.1055/s-0028-1083525
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Investigation of a Tandem Iminium Ion Allylation Approach to Piperidines

Nicole C. Manceya, Roger J. Butlinb, Joseph P. A. Harrity*a
a Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
Fax: +44(114)2229346; e-Mail: j.harrity@sheffield.ac.uk;
b Department of Medicinal Chemistry, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
Further Information

Publication History

Received 1 August 2008
Publication Date:
01 October 2008 (online)

Abstract

A [3+3]-annulation approach to piperidines via a tandem iminium ion allylation reaction of bisaminals has been developed. The scope of this process is described as well as preliminary experiments aimed at understanding the mechanism of a competing olefin isomer formation.

    References and Notes

  • 1a Strunzand GM. Finlay JA. The Alkaloids   Vol. 26:  Brossi A. Academic Press; San Diego: 1986.  p.89 
  • 1b Buffat MGP. Tetrahedron  2004,  60:  1701 
  • 1c Laschat S. Dickner T. Synthesis  2000,  1781 
  • For recent overviews, see:
  • 2a Harrity JPA. Provoost O. Org. Biomol. Chem.  2005,  3:  1349 
  • 2b Hsung RP. Kurdyumov AV. Sydorenko N. Eur. J. Org. Chem.  2005,  23 
  • 3a Movassaghi M. Chen B. Angew. Chem. Int. Ed.  2007,  46:  565 
  • 3b Schmidt A. Gütlein J.-P. Mkrrchyan S. Görls H. Langer P. Synlett  2007,  1305 
  • 3c Chan A. Scheidt KA. J. Am. Chem. Soc.  2007,  129:  5334 
  • 3d Shintani R. Hayashi T. J. Am. Chem. Soc.  2006,  128:  6330 
  • 3e Halliday JI. Chebib M. Turner P. McLeod MD. Org. Lett.  2006,  8:  3399 
  • 3f Agami C. Dechoux L. Hebbe S. Ménard C. Tetrahedron  2004,  60:  5433 
  • 3g Sydorenko N. Hsung RP. Darwish OS. Hahn JM. Liu J. J. Org. Chem.  2004,  69:  6732 
  • 3h McLaughlin MJ. Hsung RP. Cole KC. Hahn JM. Wang J. Org. Lett.  2002,  4:  2017 
  • 3i Hsung RP. Wei L.-L. Sklenicka HM. Douglas CJ. McLaughlin MJ. Mulder JA. Yao LJ. Org. Lett.  1999,  1:  509 
  • 4a Hedley SJ. Moran WJ. Prenzel AHGP. Price DA. Harrity JPA. Synlett  2001,  1596 
  • 4b Hedley SJ. Moran WJ. Price DA. Harrity JPA. J. Org. Chem.  2003,  68:  4286 
  • 4c Moran WJ. Goodenough KM. Raubo P. Harrity JPA. Org. Lett.  2003,  5:  3427 
  • 4d Goodenough KM. Moran WJ. Raubo P. Harrity JPA. J. Org. Chem.  2005,  70:  207 
  • 4e Goodenough KM. Raubo P. Harrity JPA. Org. Lett.  2005,  7:  2993 
  • 4f Pattenden LC. Wybrow RAJ. Smith SA. Harrity JPA. Org. Lett.  2006,  8:  3089 
  • 4g Provoost OY. Hedley SJ. Hazelwood AJ. Harrity JPA. Tetrahedron Lett.  2006,  47:  331 
  • 4h Pattenden LC. Wybrow RAJ. Smith SA. Harrity JPA. Org. Lett.  2006,  8:  3089 
  • 4i Pattenden LC. Adams H. Smith SA. Harrity JPA. Tetrahedron  2008,  64:  2951 
  • 5 For a similar strategy to pyrans, see: Epstein OL. Rovis T. J. Am. Chem. Soc.  2006,  128:  16480 
  • 6a Guyot B. Pornet J. Miginiac L. Tetrahedron  1991,  47:  3981 
  • 6b Princet B. Anselme G. Pornet J. J. Organomet. Chem.  1999,  592:  34 
  • 7 A related approach that employs the addition of α-methylstyrene to an ammonium chloride/formaldehyde mixture has been used to prepare the piperidine core of haloperidol: Janssen PAJ. van de Westeringh C. Jageneau AHM. Demoen PJA. Hermans BKF. van Daele GHP. Schellekens KHL. van der Eycken CAM. Niemegeers CJE. J. Med. Pharm. Chem.  1959,  1:  281 
  • 8 Katritzky AR. Luo Z. Cui X.-L. J. Org. Chem.  1999,  64:  3328 
  • 9 Shono T. Matsumura Y. Uchida K. Kobayashi H.
    J. Org. Chem.  1985,  50:  3243 
  • 10 Brimble MA. Brocke C. Eur. J. Org. Chem.  2005,  2385 
  • 11 Aizpurua JM. Palomo C. Palomo AL. Can. J. Chem.  1984,  62:  336 
  • 13 For an excellent discussion and lead references, see: Organ MG. Winkle DD. Huffmann J. J. Org. Chem.  1997,  62:  5254 
  • 14a

    Representative Experimental Procedure for the Preparation of [3+3]-Cycloaddition Adducts; Synthesis of 7-Methylenehexahydroindolizin-3(5 H )-one (7): To a solution of 5 (60 mg, 0.35 mmol, 1 equiv) in CH2Cl2 (1.5 mL) at -78 ˚C was added 1 (69 mg, 0.35 mmol, 1 equiv) in CH2Cl2 (1.5 mL) followed by TMSOTf (0.03 mL, 0.17 mmol, 0.5 equiv). The reaction was left at -78 ˚C for 1 h before being warmed to r.t. After 16 h, the reaction was quenched with aq NaHCO3 solution and extracted with CH2Cl2. The organic layers were washed with brine before drying over MgSO4. The reaction was concentrated in vacuo. Purification by silica gel chromatography provided 7 as a mixture of isomers (44 mg, 84%; exo/endo, 1:4). FTIR: 3055 (m), 2986 (m), 2685 (w), 1686 (s), 1668 (s), 1422 (m), 1266 (s) cm. ¹H NMR (250 MHz, CDCl3): δ = 1.50-1.75 (m, 3.4 H, CH), 1.85-2.51 (m, 5.4 H, CH), 2.66 (td, 0.2 H, J = 13.0, 4.0 Hz, CH exo ), 2.82 (m, 0.2 H, CH endo ), 3.41-3.58 (m, 0.8 H, CH), 3.63 (m, 0.6 H, CH), 4.06-4.28 (m, 1.2 H, CH), 4.83 (m, 0.4 H, C=CH2 exo ), 5.39 (m, 0.8 H, C=CH endo ). ¹³C NMR (69.2 MHz, CDCl3): δ = 23.3, 24.9, 25.4, 26.5, 29.3, 30.0, 30.2, 31.6, 33.3, 36.2, 37.3, 40.0, 40.7, 42.3, 53.3, 55.0, 58.3, 110.6, 117.0, 122.3, 131.8, 132.7, 143.7, 173.6, 174.0. HRMS: m/z [M+] calcd for C9H13NO: 151.0997; found: 151.0999.

  • 14b For comparative spectroscopic data of exo-7, see: Gelas-Mialhe Y. Gramain JC. Hajouji H. Remuson R. Heterocycles  1992,  34:  37 
12

The low yields of product appear to be due to competing addition of BSA to 5. Indeed, addition of BSA (1 equiv) to a mixture of 5 and TMSOTf (1 equiv) in the absence of allylsilane 1 resulted in <20% recovery of 5 together with unidentified material.