Abstract
The straightforward synthesis of phenylacetylrinvanyl (PhAR),
an ultrapotent capsaicinoid is described. The process starts with
the quantitative synthesis of methyl ricinoleate (MeRic) by castor
oil methanolysis. Afterwards, two alternative routes are possible:
a) chemoselective vanillylamine aminolysis of MeRic catalyzed by Candida antarctica lipase-B (CaLB) to
yield rinvanil, which after reaction with phenylacetic acid and
DCC-DMAP followed by a regioselectively pyrrolidine deacylation
results in PhAR with a 51% global yield, b) methyl 12-phenylacetylricinoleate
synthesis by reaction of MeRic with phenylacetic acid and DCC-DMAP,
followed by a chemoselective vanillylamine aminolysis catalyzed
by CaLB to obtain PhAR with a 70% global yield.
Key words
chemoselective synthesis - solvent effects - enzymes -
Candida antarctica B
- ultrapotent
capsaicinoid
References and Notes
1
Caterina MJ.
Schumacher MA.
Tominaga M.
Rosen TA.
Levine JD.
Julius D.
Nature (London)
1997,
389:
816
2a
Walker KM.
Urban L.
Medhurst SJ.
Patel S.
Panesar M.
Fox AJ.
McIntyre P.
J. Pharmacol. Exper. Ther.
2003,
304:
56
2b
Voets T.
Droogmans G.
Wissenbach U.
Janssens A.
Flockerzi V.
Nilius B.
Nature (London)
2004,
430:
748
3
Yiangou Y.
Facer P.
Dyer NHC.
Chan CLH.
Knowles C.
Williams NS.
Anand P.
Lancet
2001,
357:
1338
4
Winter J.
Bevan S.
Campbell EA.
Br.
J. Anaesth.
1995,
75:
157
5a
Appendino G.
De Petrocellis L.
Trevisani M.
Minassi A.
Daddario N.
Moriello AS.
Gazzieri D.
Ligresti A.
Campi B.
Fontana G.
Pinna C.
Geppetti P.
Di Marzo V.
J. Pharmacol. Exp. Ther.
2005,
312:
561
5b
Appendino G.
Cascio MG.
Bacchiega S.
Moriello AS.
Minassi A.
Thomas A.
Ross R.
Pertwee R.
De Petrocellis L.
Di
Marzo V.
FEBS Lett.
2006,
580:
568
6
Iida T.
Moriyama T.
Kobata K.
Morita A.
Murayama N.
Hashizume S.
Fushiki T.
Yazawa S.
Watanabe T.
Tominaga M.
Neuropharmacology
2003,
44:
958
7
Brand L.
Berman E.
Schwen R.
Loomans M.
Janusz J.
Bohne R.
Maddin C.
Gardne J.
Lahann T.
Farmer R.
Jones L.
Chiabrando C.
Fanneli R.
Drug Exp.
Clin. Res.
1987,
13:
259
8
Voets T.
Droogmans G.
Wissenbach U.
Janssens A.
Flockerzi V.
Nilius B.
Nature (London)
2004,
430:
748
9
Andersson KE.
Urology
2004,
63:
32
10 Morazzoni P, Riva A, Fontana G, Appendino G, and Di Marzo V. inventors; WO 2006010445.
11
Dorado MP.
Ballesteros E.
Mittelbach M.
López FJ.
Energy Fuels
2004,
18:
1457
12
Appendino G.
Minassi AN.
J. Med. Chem.
2002,
45:
3739
13
Walpole CS.
Wrigglesworth R.
Bevan S.
Campbell
EA.
Dray A.
James IF.
Masdin KJ.
Perkins MN.
Winter J.
J. Med. Chem.
1993,
36:
2381
14
Reyes-Duarte D.
Castillo E.
Martínez R.
López-Munguía A.
Biotechnol.
Lett.
2002,
24:
2057
15a
Castillo E.
López-González I.
de Regil-Hernández R.
Reyes-Duarte D.
Sánchez-Herrera D.
López-Munguía A.
Darszon A.
Biochem. Biophys. Res. Commun.
2007,
356:
424
15b
Torres-Gavilán A.
Escalante J.
Regla I.
López-Munguía A.
Castillo E.
Tetrahedron: Asymmetry
2007,
2621
16
Borsotti G.
Guglielmetti G.
Speras S.
Battistel E.
Tetrahedron
2001,
57:
10219
17
¹ H and ¹³ C
NMR spectroscopy was carried out on a JEOL Eclipse instrument at
300 and 400 MHz (¹ H NMR operating frequency),
with TMS as an internal standard and CDCl3 as solvent.
The IR spectra were carried out on a Bruker spectrophotometer Tensor
27. The [a]D
²0 values
were determined on a 341 Perkin Elmer polarimeter, at 1 dm cell length.
HRMS was determined on a JEOL JMS-SX102A instrument. Silica gel
chromatography: 70-230 mesh. Multiplicity keys: s = singlet,
d = doublet, t = triplet, c = quartet,
q = quintet, m = multiplet, br = broad,
dd = doublet of doublets.