Synlett 2008(17): 2629-2632  
DOI: 10.1055/s-0028-1083440
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis and Reactions of the First Fluorine-Containing 1,3-Bis(trimethyl­silyloxy)-1,3-butadienes

Muhammad Adeela, Stefanie Reima, Verena Wolfa, Mirza A. Yawera, Ibrar Hussaina, Alexander Villingera, Peter Langer*a,b
a Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
b Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany
e-Mail: peter.langer@uni-rostock.de;
Further Information

Publication History

Received 6 May 2008
Publication Date:
01 October 2008 (online)

Abstract

The first fluorine-containing 1,3-bis(silyl enol ethers), 2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-butadienes, have been prepared. Their reaction with electrophiles allows a convenient synthesis of various open-chain and cyclic organofluorine compounds which are not readily available by other methods.

    References and Notes

  • 1a Fluorine in Bioorganic Chemistry   Filler R. Kobayasi Y. Yagupolskii LM. Elsevier; Amsterdam: 1993. 
  • 1b Filler R. Fluorine-Containing Drugs in Organofluorine Chemicals and their Industrial Application   Pergamon; New York: 1979.  Chap. 6.
  • 1c Hudlicky M. Chemistry of Organic Compounds   Ellis Horwood; Chichester: 1992. 
  • 1d Kirsch P. Modern Fluoroorganic Chemistry   Wiley-VCH; Weinheim: 2004. 
  • 1e See also: Chambers RD. Fluorine in Organic Chemistry   Blackwell; Oxford: 2004. 
  • 1f Ryckmanns T. Balancon L. Berton O. Genicot C. Lamberty Y. Lallemand B. Passau P. Pirlot N. Quéré L. Talaga P. Bioorg. Med. Chem. Lett.  2002,  12:  261 
  • 1g Malamas MS. Sredy J. Moxham C. Katz A. Xu W. McDevitt R. Adebayo FO. Sawicki DR. Seestaller L. Sullivan D. Taylor JR. J. Med. Chem.  2000,  43:  1293 
  • 1h Ciha AJ. Ruminski PG. J. Agric. Food Chem.  1991,  39:  2072 
  • 1i Albrecht HA. Beskid G. Georgopapadakou NH. Keith DD. Konzelmann FM. Pruess DL. Rossman PL. Wei CC. Christenson JG. J. Med. Chem.  1991,  34:  2857 
  • 1j Albrecht HA. Beskid G. Christenson JG. Deitcher KH. Georgopapadakou NH. Keith DD. Konzelmann FM. Pruess DL. Wie CC. J. Med. Chem.  1994,  37:  400 
  • 1k Song CW. Lee KY. Kim CD. Chang T.-M. Chey WY. J. Pharmacol. Exp. Ther.  1997,  281:  1312 
  • 1l De Voss JJ. Sui Z. DeCamp DL. Salto R. Babe LM. Craik CS. Ortiz de Montellano PR. J. Med. Chem.  1994,  37:  665 
  • 1m Anjaiah S. Chandrasekhar S. Gree R. Adv. Synth. Catal.  2004,  346:  1329 
  • 1n Iorio MA. Paszkowska RT. Frigeni V. J. Med. Chem.  1987,  30:  1906 
  • 1o Popp JL. Musza LL. Barrow CJ. Rudewicz PJ. Houck DR. J. Antibiot.  1994,  47:  411 
  • 1p Chen TS. Petuch B. MacConnell J. White R. Dezeny G. J. Antibiot.  1994,  47:  1290 
  • 1q Lam KS. Schroeder DR. Veitch JMJM. Colson KL. Matson JA. Rose WC. Doyle TW. Forenza S. J. Antibiot.  2001,  54:  1 
  • 2a Schmidbaur H. Kumberger O. Chem. Ber.  1993,  126:  3 
  • 2b Dinger MB. Henderson W. J. Organomet. Chem.  1998,  560:  233 
  • 2c Liedtke J. Loss S. Widauer C. Grützmacher H. Tetrahedron  2000,  56:  143 
  • See, for example:
  • 3a Schneider S. Tzschucke CC. Bannwarth W. Multiphase Homogeneous Catalysis   Cornils B. Herrmann WA. Horvath IT. Leitner W. Mecking S. Olivier-Booubigou H. Vogt D. Wiley-VCH; Weinheim: 2005.  Chap. 4. p.346 
  • 3b Clarke D. Ali MA. Clifford AA. Parratt A. Rose P. Schwinn D. Bannwarth W. Rayner CM. Curr. Top. Med. Chem.  2004,  7:  729 
  • Reviews:
  • 4a Wittkopp A. Schreiner PR. In The Chemistry of Dienes and Polyenes   Vol. 2:  Rappoport Z. John Wiley & Sons; New York: 2000. 
  • 4b See also: Schreiner PR. Chem. Soc. Rev.  2003,  32:  289 
  • 4c Wittkopp A. Schreiner PR. Chem. Eur. J.  2003,  9:  407 
  • 4d Kleiner CM. Schreiner PR. Chem. Commun.  2006,  4315 
  • 4e Kotke M. Schreiner PR. Synthesis  2007,  779 
  • 4f Review: Tsogoeva SB. Eur. J. Org. Chem.  2007,  1701 
  • 5 Metal-Catalyzed Cross-Coupling Reactions   de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004. 
  • 6a Shi G.-Q. Cottens S. Shiba SA. Schlosser MA. Tetrahedron  1992,  48:  10569 
  • 6b Shi G.-Q. Schlosser M. Tetrahedron  1993,  49:  1445 
  • 6c Patrick TB. Rogers J. Gorrell K. Org. Lett.  2002,  4:  3155 
  • 7 Lefebvre O. Brigaud T. Portella C. Tetrahedron  1998,  54:  5939 
  • 8 For a review of 1,3-bis(silyl enol ethers), see: Langer P. Synthesis  2002,  441 
  • 9 Chan T.-H. Brownbridge P. J. Chem. Soc., Chem. Commun.  1979,  578 
  • 10 For a review of [3+3]-cyclizations, see: Feist H. Langer P. Synthesis  2007,  327 
  • 11 For [3+3] cyclizations of 1,3-bis(silyloxy)-1,3-dienes with 2-fluoro-3-silyloxy-2-en-1-ones, see: Hussain I. Yawer MA. Lau M. Pundt T. Fischer C. Reinke H. Görls H. Langer P. Eur. J. Org. Chem.  2008,  503 
  • 12 Rahn T. Nguyen VTH. Dang THT. Ahmed Z. Lalk M. Fischer C. Spannenberg A. Langer P. J. Org. Chem.  2007,  72:  1957 
  • 13 Langer P. Stoll M. Schneider S. Chem. Eur. J.  2000,  6:  3204 
  • 14 Langer P. Armbrust H. Eckardt T. Magull J. Chem. Eur. J.  2002,  8:  1443 
  • 15a Bellur E. Görls H. Langer P. Eur. J. Org. Chem.  2005,  2074 
  • 15b See also: Langer P. Krummel T. Chem. Eur. J.  2001,  7:  1720 
  • The synthesis of a difluoro(furan-2-yl)acetate by a different approach has been recently reported:
  • 16a Eto H. Kanwko Y. Sakamoto T. Chem. Pharm. Bull.  2000,  48:  982 
  • 16b Murakami S. Kim S. Ishii H. Fuchigami T. Synlett  2004,  815 
  • 17a Langer P. Appel B. Tetrahedron Lett.  2003,  44:  5133 
  • 17b Rashid MA. Rasool N. Appel B. Adeel M. Karapetyan V. Mkrtchyan S. Reinke H. Fischer C. Langer P. Tetrahedron  2008,  64:  5416 
  • 18 Langer P. Kracke B. Tetrahedron Lett.  2000,  41:  4545 
  • 20 Emmrich T. Reinke H. Langer P. Synthesis  2006,  2551 
19

CCDC 684861 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

21

Synthesis of 2-Ethoxy-3-fluoro-6-(phenylsulfonyl)pyr-idin-4-ol (14): To phenylsulfonyl cyanide was dropwise added 3a at -78 ˚C. The neat reaction mixture was subsequently stirred at 45 ˚C for 48 h. To the mixture was added a sat. aq solution of NH4Cl (20 mL) and the organic and the aqueous layer were separated. The latter was extracted with CH2Cl2 (3 × 20 mL). The combined organic layers were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, heptanes-EtOAc) to give 14. Starting with phenylsulfonyl cyanide (0.167 g, 1.0 mmol) and 3a (0.589 g, 2.0 mmol), 14 was isolated as a red solid (0.179 g, 59%). ¹H NMR (250 MHz, CDCl3): δ = 1.22 (t, ³ J = 7.1 Hz, 3 H, OCH2CH 3), 4.26 (q, ³ J = 7.0 Hz, 2 H, OCH 2CH3), 7.19 (br s, 1 H, OHheter), 7.43 (m, 1 H, CHheter), 7.46-7.50 (m, 2 H, CHPh), 7.53-7.56 (m, 1 H, CHPh), 7.95 (dd, ³ J = 8.4 Hz, 4 J = 1.5 Hz, 2 H, CHPh). ¹³C NMR (75 MHz, CDCl3): δ = 14.1 (OCH2 CH3), 63.6 (OCH2CH3), 107.8 (CHheter), 128.9 (2 × CHPh), 129.0 (2 × CHPh), 133.8 (CHPh), 136.8 (d, ¹ J = 252.4 Hz, CFheter), 138.4 (CPh), 149.4 (d, 4 J = 6.7 Hz, Cheter), 151.3 (d, ² J = 10.2 Hz, COHheter), 153.8 (d, ² J = 9.9 Hz, Cheter). ¹9F NMR (235 MHz, CDCl3): δ =
-162.05 (CFheter). IR (neat): 3354 (w), 1576 (m), 1440 (m), 1353 (m), 1317 (m), 1149 (s), 1076 (m), 1022 (m), 740 (s), 724 (s), 682 (s), 585 (s) cm. HRMS (ESI, positive): m/z
[M + H]+ calcd for C13H13FNO4S: 298.05438; found: 298.05413. HRMS (ESI, positive): m/z [M + Na]+ calcd for C13H12FNO4SNa: 320.03652; found: 320.03633. All products gave satisfactory spectroscopic data and correct elemental analyses and/or high resolution mass data.