RSS-Feed abonnieren
DOI: 10.1055/a-2803-0545
Unlocking Difluorocarbene as a Versatile Precursor to Fluorocarbon Anions and Radicals via Palladium Catalysis
Autor*innen
National Natural Science Foundation of China grants 22193072 and Strategic Priority Research Program of the Chinese Academy of Sciences XDB0590000.
Gefördert durch: National Natural Science Foundation of China 22193072

Abstract
Difluorocarbene, a versatile bipolar intermediate, has been widely exploited in ionic-type coupling reactions. Its direct transformation into a fluorinated carbon-radical species, however, has remained a formidable challenge because of the large singlet–triplet energy gap. Here we report an unprecedented strategy that unlocks difluorocarbene as a precursor for both fluorinated carbanions and carbon radicals through the thermolytic homolysis of an aryldifluoromethylpalladium intermediate. This palladium-catalyzed sequential process enables a modular three-component coupling of aryl iodides, alkenes, and ClCF2H, delivering a broad spectrum of difluoroalkylated arenes in high efficiency. The method features inexpensive and readily available reagents, excellent functional-group tolerance, and opens a new avenue for the precise installation of the difluoromethylene motif.
Keywords
Difluorocarbene - Fluoroalkyl radical - Metal difluorocarbene - Palladium catalysis - Palladium difluorocarbene - Aryldifluoromethylpalladium - Alkenes - Coupling reactionPublikationsverlauf
Eingereicht: 15. Dezember 2025
Angenommen nach Revision: 02. Februar 2026
Accepted Manuscript online:
05. Februar 2026
Artikel online veröffentlicht:
13. Februar 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Miller K, Faeh C, Diederich F. Science 2007; 317: 1881-1886
- 1b Wang J, Sánchez-Roselló M, Aceña JL. et al. Chem Rev 2014; 114: 2432-2506
- 1c Hagmann WK. J Med Chem 2008; 51: 4359-4369
- 1d Meanwell NA. J Med Chem 2011; 54: 2529-2591
- 1e O’Hagan D, Wang Y, Skibinski M, Slawin AMZ. Pure Appl Chem 2012; 84: 1587-1595
- 1f Meanwell NA. J Med Chem 2018; 61: 5822-5880
- 2a Brahms DLS, Dailey WP. Chem Rev 1996; 96: 1585-1632
- 2b Ni C, Hu J. Synthesis 2014; 46: 842-863
- 2c Dilman AD, Levin VV. Acc Chem Res 2018; 51: 1272-1280
- 2d Xie Q, Hu J. Acc Chem Res 2024; 57: 693-713
- 3a Feng Z, Min Q-Q, Zhang X. Org Lett 2016; 18: 44-47
- 3b Feng Z, Min Q-Q, Fu X-P, An L, Zhang X. Nat Chem 2017; 9: 918-923
- 3c Fu X-P, Xue X-S, Zhang X-Y. et al. Nat Chem 2019; 11: 948-956
- 3d Zeng X, Li Y, Min Q-Q, Xue X-S, Zhang X. Nat Chem 2023; 15: 1064-1073
- 4a Takahira Y, Morizawa Y. J Am Chem Soc 2015; 137: 7031-7034
- 4b Fuchibe K, Aono T, Hu J, Ichikawa J. Org Lett 2016; 18: 4502-4505
- 5 Koda S. Chem Phys Lett 1978; 55: 353-355
- 6 Sun S-P, Mu T, Zhang X-Y. et al. J Am Chem Soc 2025; 147 (42) 38897-38906
- 7a Ye Y, Lee SH, Sanford MS. Org Lett 2011; 13: 5464-5467
- 7b Xiang J-X, Ouyang Y, Xu X-H, Qing F-L. Angew Chem Int Ed 2019; 58: 10320-10324
- 7c Yang X, Tsui GC. Org Lett 2020; 22: 4562-4567
- 8 Zhang X-Y, Sun S-P, Sang Y-Q, Xue X-S, Min Q-Q, Zhang X. Angew Chem Int Ed 2023; 62: e202306501