Subscribe to RSS

DOI: 10.1055/a-2797-3446
Biological Carbon Capture Using Spinach Carbonic Anhydrase Immobilized on Magnetite Nanoparticles
Authors

Abstract
Bio-based carbon capture, utilization, and storage (CCUS) presents a promising alternative to conventional CCU methods, primarily due to its inherent potential for valorization. In the present study, carbonic anhydrase extracted from spinach leaves (Spinacia oleracea) was immobilized onto citric acid-functionalized magnetite nanoparticles (Fe3O4@CA NPs). This bio-nano hybrid functions as an efficient catalyst for enhancing CO2 solubility by accelerating its conversion to bicarbonate (HCO3 −), thereby overcoming the low aqueous solubility of gaseous CO2, a known limiting factor in photosynthetic autotrophs. Growth experiments using Escherichia coli cultures supplemented with these NPs demonstrated a ~62% increase in biomass production compared to the control group when the culture was sparged with atmospheric air, demonstrating that carbonic anhydrase-immobilized NPs effectively facilitated the uptake of atmospheric CO2 and redirected it into cellular biomass. Considering that 1 g E. coli dry cell weight can capture ~86 mg CO2, this approach can be used for carbon capture and production of fermentation-derived value-added products. Moreover, such systems hold significant potential for applications in algal biofuel production and the cultivation of slow-growing organisms, such as cyanobacteria, where efficient carbon assimilation is crucial for their growth.
Keywords
Carbon capture, utilization, and storage - Carbonic anhydrase - Magnetite nanoparticles - Enzyme immobilizationPublication History
Received: 10 October 2025
Accepted after revision: 26 January 2026
Accepted Manuscript online:
26 January 2026
Article published online:
11 February 2026
© 2026. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
Harish Raj Arumugam, Abhik Chattopadhyay, Dilkhush Zaroliwalla, Devansh Sanghavi, Eshira Gupta, Neetu Jha, Shamlan Reshamwala. Biological Carbon Capture Using Spinach Carbonic Anhydrase Immobilized on Magnetite Nanoparticles. Sustainability & Circularity NOW 2026; 03: a27973446.
DOI: 10.1055/a-2797-3446
-
References
- 1
Lindsey R.
National Oceanic and Atmospheric Administration 2025, May 21. Climate change: atmospheric
carbon dioxide https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide (accessed August 2025)
- 2 Crippa M, Guizzardi D, Pagani F. et al. GHG Emissions of all World Countries. Luxembourg: Publications Office of the European Union; 2024. JRC138862 (accessed August 2025)
- 3 Kabir M, Habiba UE, Khan W. et al. J King Saud Univ, Eng Sci 2023; 35 (05) 102693
- 4 Liang Y, Kleijn R, Tukker A, van der Voet E. Renew Sustainable Energy Rev 2022; 161: 112334
- 5 Bose D, Bhattacharya R, Kaur T. et al. Carbon Capt Sci Technol 2024; 12: 100238
- 6 Shyam A, Ahmed KRA, Kumar JPN, Iniyan S, Goic R. Next Sustainability 2025; 6: 100118
- 7 Sieborg MU, Nielsen AKH, Ottosen LDM, Daasbjerg K, Kofoed MVW. Nat Commun 2024; 15: 7492
- 8 Bar-Even A, Noor E, Milo R. J Exp Bot 2012; 63 (06) 2325-2342
- 9 Chadwick BJ, Lin X. Curr Opin Microbiol 2024; 79: 102488
- 10 Talekar S, Jo BH, Dordick JS, Kim J. Curr Opin Microbiol 2022; 74: 230-240
- 11 Shao P, Ye J, Shen Y, Zhang S, Zhao J. Gas Sci Eng 2024; 123: 205237
- 12 Drozdov AS, Shapovalova OE, Ivanovski V, Avnir D, Vinogradov VV. Chem Mater 2016; 28 (07) 2248-2253
- 13
Supuran CT,
Capasso C.
Physiol Biotechnol Aspects Extremophiles 2020; 295-306
- 14 Gayathri R, Mahboob S, Govindarajan M. et al. King Saud Univ, Sci 2020; 33 (02) 101282
- 15 Rae BD, Long BM, Badger MR, Price GD. Microbiol Mol Biol Rev 2013; 77 (03) 357-379
- 16 Long BM, Hee WY, Sharwood RE. et al. Nat Commun 2018; 9: 3570
- 17 Goodchild-Michelman IM, Church GM, Schubert MG, Tang T-C. Mater Today Bio 2023; 19: 100583
- 18 Merlin C, Masters M, McAteer S, Coulson A. J Bacteriol 2003; 185 (21) 6415-6424
- 19 Zaidi S, Srivastava N, Khare SK. Bioresour Technol 2022; 365: 128174
- 20 Peirce S, Russo ME, Isticato R, Lafuente RF, Salatino P, Marzocchella A. Biochem Eng J 2017; 127: 188-195
- 21 Liu L, Wang X, Gao Z, Zhan Y, Yao M, Bao J. Water Air Soil Pollut 2025; 236: 235
- 22 Vinoba M, Lim KS, Lee SH, Jeong SK, Alagar M. Langmuir 2011; 27 (10) 6227-6234
- 23 Fan B, Zhang Y, Lv Y. Matter 2023; 6 (12) 4245-4260
- 24 Electronic Theses and Dissertations from 2009, Lakehead University, Carbon bio-sequestration
by anhydrase enzyme extracted from spinach (Spinacia oleracea), 2018 http://knowledgecommons.lakeheadu.ca/handle/2453/4291 (accessed August 2025)
- 25 Dheyab MA, Aziz AA, Jameel MS, Noqta OA, Khaniabadi PM, Mehrdel B. Sci Rep 2020; 10 (01) 10793
- 26 Sigma-Aldrich, Enzymatic Assay of Carbonic Anhydrase for Wilbur-Anderson Units (EC
4.2.1.1) https://www.sigmaaldrich.com/IN/en/technical-documents/protocol/protein-biology/enzyme-activity-assays/enzymatic-assay-of-carbonic-anhydrase?srsltid=AfmBOoqBueiJBa6Y4A82PFCiktuXuMhlDPDS8RRSutDYztmLK0PCFgiu (accessed August 2025)
- 27 Maser A, Peebo K, Vilu R, Nahku R. Res Microbiol 2020; 171 (05/06) 185-193
- 28 Braun A, Spona-Friedl M, Avramov M. et al. Biogeosciences 2021; 18: 3689-3700
- 29
Yap PY,
Trau D.
Tip Biosystems Pte Ltd, Singapore. DIRECT E.COLI CELL COUNT AT OD600. 2019 https://www.tipbiosystems.com/wp-content/uploads/2023/12/AN102-E.coli-Cell-Count_2019_04_25.pdf (accessed August 2025)
- 30 Ansari MT. Asian J Chem 2016; 29: 437-440
European Commission, Joint Research Centre: