Subscribe to RSS

DOI: 10.1055/a-2793-1721
Valorization of Food Waste through Controlled Oxidation: A Case Study on Densification of Onion Waste
Authors
The research work was funded by GreenShift Energy Pvt Ltd, Mumbai, India.

Abstract
Around 20% of the fruits and vegetables produced globally are lost between harvest and retail owing to infrastructure and logistics challenges. There are no technologies available to utilize this waste comprehensively, which amounts to billions in economic losses annually. While methods are available for extraction of bio-active compounds, the technologies to harness fibers and sugars, which are the major components of the waste, are not reported. This work reports a new technique for valorization of waste onion, as it consists of carbohydrates and fibers and represents the typical composition of food and vegetable waste. The controlled oxidation of onion waste under ambient conditions led to decomposition of 90% of the sugars, which resulted in crosslinking of the fibers to create a strong and rigid densified matrix of the fibers. The densified matrix had a compression strength of 101.7 MPa and remained stable up to 100 °C. Such densified materials can be used for packaging applications or as one of the components of vegan leather. The onion waste and densified material were characterized using FTIR, XRD, SEM imaging, elemental analysis, and compression testing to identify the structure–property relationship.
Publication History
Received: 04 November 2025
Accepted after revision: 20 January 2026
Accepted Manuscript online:
20 January 2026
Article published online:
06 February 2026
© 2026. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
Sudam Sankar Padhi, Saurabh Chandrakant Patankar. Valorization of Food Waste through Controlled Oxidation: A Case Study on Densification of Onion Waste. Sustainability & Circularity NOW 2026; 03: a27931721.
DOI: 10.1055/a-2793-1721
-
References
- 1 Roy P, Mohanty AK, Dick P, Misra M. ACS Environ Au 2023; 3 (02) 58-75
- 2 THE 17 GOALS | Sustainable Development (accessed October 21, 2025) https://sdgs.un.org/goals
- 3 Sharma K, Aroor MS, Das S, Bora B, Gupta M, Srivatsan V. Sci Hortic 2025; 345: 114152
- 4
Srivastava R,
Meena K,
Tiwari A,
Singh N,
Behera TK.
Int J Plant Soil Sci 2022; 1034-1040
- 5 “30-40 lakh tonnes of onion get wasted due to lack of storage” – The Economic Times
(accessed October 21, 2025) https://economictimes.indiatimes.com/news/economy/agriculture/30-40-lakh-tonnes-of-onion-get-wasted-due-to-lack-of-storage/articleshow/48776996.cms
- 6 Jaganmohanrao L. Food Res Int 2025; 206: 115980
- 7 Bains A, Sridhar K, Singh BN, Kuhad RC, Chawla P, Sharma M. Chemosphere 2023; 343: 140178
- 8 Paesa M, Nogueira DP, Velderrain-Rodríguez G. et al. Antioxidants 2022; 11 (04) 733
- 9 Thivya P, Bhanu Prakash Reddy N, Bhosale Yuvraj K, Sinija VR. Rev Environ Sci Biotechnol 2023; 22 (01) 29-53
- 10
Abdelkader A,
Azoom A,
Hamdi W,
Zhani K,
Hannachi C.
Int Res J Eng Technol. Published online 2015. Accessed December 23, 2025 www.irjet.net
- 11 Gupta AJ, Kaldate S, Volaguthala S, Mahajan V. J Funct Foods 2025; 129: 106889
- 12 Reddy JP, Rhim JW. J Nat Fibers 2018; 15 (04) 465-473
- 13 Jaime L, Mollá E, Fernández A, Martín-Cabrejas MA, López-Andréu J, Esteban RM. Tissues J Agric Food Chem 2001; 50 (01) 122-128
- 14 Sagar NA, Pareek S, Benkeblia N, Xiao J. Food Front 2022; 3 (03) 380-412
- 15 Shahid I, Hussain G, Anis M. et al. Energies 2023; 16 (05) 2181
- 16 Dammu AK, Nisa S, Shergujri MA, Bhaduri GA. Chem Eng Res Des 2025; 219: 414-428
- 17 Matsuki S, Kayano H, Takada J. et al. ACS Sustainable Chem Eng 2020; 8 (48) 17800-17806
- 18 Özkan M, Borghei M, Karakoç A, Rojas OJ, Paltakari J. Sci Rep 2018; 8 (01) 4748
- 19 Miyuki YO, Yaxin T, Akira Isogai Z. et al. Cellulose 2021; 28 (10) 6035-6049
- 20 Lin N, Bruzzese C, Dufresne A. ACS Appl Mater Interfaces 2012; 4 (09) 4948-4959
- 21 Bensaad DE, Saleh M, Ismail K, Lee Y, Ondier G. Jordan J Agric Sci 2022; 18 (04) 293-308
- 22 El Hosry L, Elias V, Chamoun V. et al. Foods 2025; 14 (11) 1881
- 23 Shaker G, Zubair M. StatPearls. 2025 (accessed October 24, 2025) https://www.ncbi.nlm.nih.gov/books/NBK594277/
- 24 Ambade VN, Sharma Y, Somani. Med J Armed Forces India 2017; 54 (02) 131
- 25
Jain A,
Jain R,
Jain S.
Basic Techniques in Biochemistry, Microbiology and Molecular Biology. Published online
2020
- 26 Ibert M, Marsais F, Merbouh N, Brückner C. Carbohydr Res 2002; 337 (11) 1059-1063
- 27 Jin W, Zhao S, Chen X. et al. Curr Res Food Sci 2024; 8: 100781
- 28 Løkke MM, Edelenbos M, Larsen E, Feilberg A. Sensors 2012; 12 (12) 16060
- 29 Sagar NA, Pareek S, Benkeblia N, Xiao J. Food Front 2022; 3 (03) 380-412
- 30 Nourzad S, Naghdi Badi H, Kalateh Jari S, Mehrafarin A, Saeidi-Sar S. Food Sci Nutr 2024; 12 (09) 6690
- 31 Savitha S, Chakraborty S, Thorat BN. Dry Technol 2022; 40 (12) 2550-2567
- 32 Gutam G, Kumar Chauhan A, Singh M, Singh A. J Food Agric Res 2021; 1 (01) 30-46
- 33 Kefale B. J Pub Health Nutri 2022; 5: 1
- 34 Sangseethong K, Termvejsayanon N, Sriroth K. Carbohydr Polym 2010; 82 (02) 446-453
- 35 Öztürk S, Işık C, Teke M. Catal Lett 2025; 155 (06) 1-13
- 36 Trautmann E, Attin T, Mohn D, Zehnder M. J Endodont 2021; 47 (02) 297-302
- 37 Sukhija S, Singh S, Riar CS. Food Hydrocoll 2016; 55: 56-64
- 38 Carrera JD, Viteri Narváez DA, Leon M, Francisco Alvarez-Barreto J. Adv Sci, Technol Eng Syst J 2020; 5 (06) 1372-1380
- 39 Awalluddin D, Mohd Ariffin MA, Osman MH. et al. MATEC Web Conf 2017; 138: 01024
- 40 (4) Douglas-Fir Larch Compression Tests Parallel to the Grain: Strength and Stiffness
Analysis. | LinkedIn (accessed October 25, 2025) https://www.linkedin.com/pulse/douglas-fir-larch-compression-tests-parallel-grain-strength-vilguts-v5ute/
- 41
Senalik CA.
Mechanical Properties of Wood. Published online 2021
- 42 ASM Material Data Sheet (accessed October 25, 2025) https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA7178T6
- 43 Hong T, Yin JY, Nie SP, Xie MY. Food Chem X 2021; 12: 100168
- 44 Wani KM, Uppaluri RVS. Appl Food Res 2023; 3 (02) 100345
- 45 Kumar A, Chauhan GS. Carbohydr Polym 2010; 82 (02) 454-459
- 46 Sinyayev VA, Toxeitova GA, Batyrbayeva AA, Sassykova LR, Azhigulova RN, Sakhipov YN. J Chem Technol Metall. 2020 55
- 47 Sheng Z, Qiuxiao Z, Tingting W. et al. Cellulose 2022; 29 (06) 3195-3208
- 48 Rodriguez-Navarro C, Linares-Fernandez L, Doehne E, Sebastian E. J Cryst Growth 2002; 243 (3/4) 503-516
- 49 Bao N, Miao X, Hu X, Zhang Q, Jie X, Zheng X. Catalysts 2017; 7 (4) 117
- 50 Lee DK, Kim S, Oh S, Choi JY, Lee JL, Yu HK. Sci Rep 2017; 7 (01) 1-7