Subscribe to RSS

DOI: 10.1055/a-2790-5251
Diabetes, Protein Misfolding, and Heat Stress: Molecular Insights and Translational Perspectives
Authors
Abstract
Diabetes mellitus (DM), particularly type 1 (T1D) and type 2 (T2D), is a growing global health burden with complex pathophysiology extending beyond glucose dysregulation. Both forms of diabetes involve cellular stress, chronic inflammation, and β-cell dysfunction. Heat shock proteins (HSPs), key mediators of protein homeostasis and immune modulation, are emerging as critical players in the progression and complications of diabetes. In T1D, HSPs act at the crossroads of β-cell stress and autoimmunity, while in T2D, their dysregulation contributes to insulin resistance and mitochondrial dysfunction. Misfolded proteins, particularly amylin aggregates, further drive β-cell apoptosis in T2D and may influence immune activation in T1D. Hyperthermia (HT) and passive heat therapy (hT) activate protective stress responses through HSP induction, mimicking some benefits of exercise and improving glycemic control, insulin sensitivity, and vascular health. Preclinical and early clinical studies suggest that thermal interventions could complement standard care, especially in patients unable to engage in regular physical activity. This review consolidates current evidence on the roles of HSPs, amylin misfolding, and hT in the pathogenesis of diabetes, with a particular emphasis on vascular and thrombotic complications and their therapeutic implications. Targeting these converging molecular pathways may offer new avenues for preserving β-cell function, mitigating metabolic complications, and enhancing diabetes management.
Keywords
cardiovascular disease - heat shock proteins - heat therapy - hyperthermia - mitochondrial dysfunction - diabetes mellitus - endothelial progenitor cells - thrombosis - amylinContributors' Statement
M.M.A.: Conceptualization, writing–review and editing. V.H.S.: Conceptualization, writing–review and editing. D.M.S.: Conceptualization, writing–original draft, writing–review and editing.
Publication History
Received: 15 October 2025
Accepted: 15 January 2026
Article published online:
09 February 2026
© 2026. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
M. Marc Abreu, Victor Hugo Spitz, David M. Smadja. Diabetes, Protein Misfolding, and Heat Stress: Molecular Insights and Translational Perspectives. TH Open 2026; 10: a27905251.
DOI: 10.1055/a-2790-5251
-
References
- 1 de Ferranti SD, de Boer IH, Fonseca V. et al. Type 1 diabetes mellitus and cardiovascular disease: A Scientific Statement from the American Heart Association and American Diabetes Association. Circulation 2014; 130 (13) 1110-1130
- 2 Fox CS, Golden SH, Anderson C. et al; American Heart Association Diabetes Committee of the Council on Lifestyle and Cardiometabolic Health, Council on Clinical Cardiology, Council on Cardiovascular and Stroke Nursing, Council on Cardiovascular Surgery and Anesthesia, Council on Quality of Care and Outcomes Research, and the American Diabetes Association. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: A Scientific Statement from the American Heart Association and the American Diabetes Association. Circulation 2015; 132 (08) 691-718
- 3 Silvestre J-S, Smadja DM, Lévy BI. Postischemic revascularization: From cellular and molecular mechanisms to clinical applications. Physiol Rev 2013; 93 (04) 1743-1802
- 4 Li Q, Qian Z, Huang Y. et al. Mechanisms of endothelial senescence and vascular aging. Biogerontology 2025; 26 (04) 128
- 5 Liu F, Cai H. Diabetes and calcific aortic valve disease: Implications of glucose-lowering medication as potential therapy. Front Pharmacol 2025; 16: 1583267 . Accessed July 26, 2025 at: https://www.frontiersin.org/articles/10.3389/fphar.2025.1583267/full
- 6 Rosa M, Paris C, Sottejeau Y. et al. Leptin induces osteoblast differentiation of human valvular interstitial cells via the Akt and ERK pathways. Acta Diabetol 2017; 54 (06) 551-560
- 7 Rosa M, Dupont A, Smadja DM. et al. Aortic valve calcification is induced by the loss of ALDH1A1 and can be prevented by agonists of retinoic acid receptor alpha: Preclinical evidence for drug repositioning. Circulation 2025; 151 (18) 1329-1341
- 8 Blandinières A, Rossi E, Gendron N. et al. Unveiling the angiogenic potential and functional decline of valve interstitial cells during calcific aortic valve stenosis progression. J Cell Mol Med 2025; 29 (07) e70511
- 9 Ortega HI, Udler MS, Gloyn AL. et al. Diabetes mellitus polygenic risk scores: Heterogeneity and clinical translation. Nat Rev Endocrinol 2025; 21: 530-545 . Accessed July 14, 2025 at: https://www.nature.com/articles/s41574-025-01132-w
- 10 Chen D, Sindone A, Huang MLH. et al. Clinical management of diabetic cardiomyopathy with insights into pathophysiology and diagnosis. J Mol Cell Cardiol 2025; 206: 55-69 . Accessed January 23, 2026 at: https://www.sciencedirect.com/science/article/pii/S0022282825001117
- 11 de Oliveira AA, Mendoza VO, Rastogi S, Nunes KP. New insights into the role and therapeutic potential of HSP70 in diabetes. Pharmacol Res 2022; 178: 106173
- 12 Smadja DM, Chocron AF, Abreu MM. HSP47 at the crossroads of thrombosis and collagen dynamics: Unlocking therapeutic horizons and debates. TH Open 2025; 9: a25994925
- 13 Bielecka-Dabrowa A, Barylski M, Mikhailidis DP, Rysz J, Banach M. HSP 70 and atherosclerosis–protector or activator?. Expert Opin Ther Targets 2009; 13 (03) 307-317
- 14 Walker CS, Aitken JF, Vazhoor Amarsingh G. et al. Amylin: Emergent therapeutic opportunities in overweight, obesity and diabetes mellitus. Nat Rev Endocrinol 2025; 21: 482-494 . Accessed July 14, 2025 at: https://www.nature.com/articles/s41574-025-01125-9
- 15 Li G, Zhang D. Research progress on the correlation between islet amyloid peptides and type 2 diabetes mellitus. Open Med (Wars) 2025; 20 (01) 20241124
- 16 Esmaeilzadeh A, Mohammadi V, Elahi R, Rezakhani N. The role of heat shock proteins (HSPs) in type 2 diabetes mellitus pathophysiology. J Diabetes Complications 2023; 37 (11) 108564
- 17 Moin ASM, Nandakumar M, Diane A, Dehbi M, Butler AE. The role of heat shock proteins in type 1 diabetes. Front Immunol 2021; 11: 612584
- 18 Abreu MM, Chocron AF, Smadja DM. From cold to hot: Mechanisms of hyperthermia in modulating tumor immunology for enhanced immunotherapy. Front Immunol 2025; 16: 1487296
- 19 Smadja DM, Abreu MM. Hyperthermia and targeting heat shock proteins: Innovative approaches for neurodegenerative disorders and long COVID. Front Neurosci 2025; 19: 1475376
- 20 Laukkanen JA, Kunutsor SK. The multifaceted benefits of passive heat therapies for extending the healthspan: A comprehensive review with a focus on Finnish sauna. Temperature 2024; 11 (01) 27-51
- 21 Laukkanen JA, Laukkanen T, Kunutsor SK. Cardiovascular and other health benefits of sauna bathing: A review of the evidence. Mayo Clin Proc 2018; 93 (08) 1111-1121
- 22 Sebők J, Édel Z, Váncsa S. et al. Heat therapy shows benefit in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Int J Hyperthermia 2021; 38 (01) 1650-1659
- 23 Birk OS, Elias D, Weiss AS. et al. NOD mouse diabetes: The ubiquitous mouse hsp60 is a beta-cell target antigen of autoimmune T cells. J Autoimmun 1996; 9 (02) 159-166
- 24 Brudzynski K, Martinez V, Gupta RS. Secretory granule autoantigen in insulin-dependent diabetes mellitus is related to 62. kDa heat-shock protein (hsp60). J Autoimmun 1992; 5 (04) 453-463
- 25 Quintana FJ, Cohen IR. The HSP60 immune system network. Trends Immunol 2011; 32 (02) 89-95
- 26 Juwono J, Martinus RD. Does Hsp60 provide a link between mitochondrial stress and inflammation in diabetes mellitus?. J Diabetes Res 2016; 2016: 8017571
- 27 Horváth L, Cervenak L, Oroszlán M. et al. Antibodies against different epitopes of heat-shock protein 60 in children with type 1 diabetes mellitus. Immunol Lett 2002; 80 (03) 155-162
- 28 Vives-Pi M, Somoza N, Vargas F. et al. Expression of glutamic acid decarboxylase (GAD) in the alpha, beta and delta cells of normal and diabetic pancreas: Implications for the pathogenesis of type I diabetes. Clin Exp Immunol 1993; 92 (03) 391-396
- 29 Abulafia-Lapid R, Elias D, Raz I, Keren-Zur Y, Atlan H, Cohen IR. T cell proliferative responses of type 1 diabetes patients and healthy individuals to human hsp60 and its peptides. J Autoimmun 1999; 12 (02) 121-129
- 30 Verrijn Stuart AA, de Jager W, Klein MR. et al. Recognition of heat shock protein 60 epitopes in children with type 1 diabetes. Diabetes Metab Res Rev 2012; 28 (06) 527-534
- 31 Elias D, Meilin A, Ablamunits V. et al. Hsp60 peptide therapy of NOD mouse diabetes induces a Th2 cytokine burst and downregulates autoimmunity to various beta-cell antigens. Diabetes 1997; 46 (05) 758-764
- 32 Schloot NC, Meierhoff G, Lengyel C. et al. Effect of heat shock protein peptide DiaPep277 on beta-cell function in paediatric and adult patients with recent-onset diabetes mellitus type 1: Two prospective, randomized, double-blind phase II trials. Diabetes Metab Res Rev 2007; 23 (04) 276-285
- 33 Raz I, Eldor R, Naparstek Y. Immune modulation for prevention of type 1 diabetes mellitus. Trends Biotechnol 2005; 23 (03) 128-134
- 34 Rizava C, Bekiari E, Liakos A. et al. Antigen-based immunotherapies do not prevent progression of recent-onset autoimmune diabetes: A systematic review and meta-analysis. Endocrine 2016; 54 (03) 620-633
- 35 Gaskins HR, Prochazka M, Nadeau JH, Henson VW, Leiter EH. Localization of a mouse heat shock Hsp70 gene within the H-2 complex. Immunogenetics 1990; 32 (04) 286-289
- 36 Brorsson C, Hansen NT, Lage K, Bergholdt R, Brunak S, Pociot F. Diabetes Genetics Consortium. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data. Diabetes Obes Metab 2009; 11 Suppl 1 (Suppl. 01) 60-66
- 37 De Maio A. Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: A form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones 2011; 16 (03) 235-249
- 38 Bellmann K, Wenz A, Radons J, Burkart V, Kleemann R, Kolb H. Heat shock induces resistance in rat pancreatic islet cells against nitric oxide, oxygen radicals and streptozotocin toxicity in vitro. J Clin Invest 1995; 95 (06) 2840-2845
- 39 Burkart V, Liu H, Bellmann K. et al. Natural resistance of human beta cells toward nitric oxide is mediated by heat shock protein 70. J Biol Chem 2000; 275 (26) 19521-19528
- 40 Fong JJ, Sreedhara K, Deng L. et al. Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. EMBO J 2015; 34 (22) 2775-2788
- 41 El-Horany HE-S, Abd-Ellatif RN, Watany M, Hafez YM, Okda HI. NLRP3 expression and urinary HSP72 in relation to biomarkers of inflammation and oxidative stress in diabetic nephropathy patients. IUBMB Life 2017; 69 (08) 623-630
- 42 Cianciaruso C, Phelps EA, Pasquier M. et al. Primary human and rat β-cells release the intracellular autoantigens GAD65, IA-2, and proinsulin in exosomes together with cytokine-induced enhancers of immunity. Diabetes 2017; 66 (02) 460-473
- 43 Watkins RA, Evans-Molina C, Terrell JK. et al. Proinsulin and heat shock protein 90 as biomarkers of beta-cell stress in the early period after onset of type 1 diabetes. Transl Res 2016; 168: 96-106.e1
- 44 Vig S, Buitinga M, Rondas D. et al. Cytokine-induced translocation of GRP78 to the plasma membrane triggers a pro-apoptotic feedback loop in pancreatic beta cells. Cell Death Dis 2019; 10: 309 . Springer Science and Business Media LLC. Accessed July 24, 2025 at: https://www.nature.com/articles/s41419-019-1518-0
- 45 Figueredo A, Ibarra JL, Rodriguez A. et al. Increased serum levels of IgA antibodies to hsp70 protein in patients with diabetes mellitus: Their relationship with vascular complications. Clin Immunol Immunopathol 1996; 79 (03) 252-255
- 46 Bason C, Corrocher R, Lunardi C. et al. Interaction of antibodies against cytomegalovirus with heat-shock protein 60 in pathogenesis of atherosclerosis. Lancet 2003; 362 (9400): 1971-1977
- 47 Qin H-Y, Mahon JL, Atkinson MA, Chaturvedi P, Lee-Chan E, Singh B. Type 1 diabetes alters anti-hsp90 autoantibody isotype. J Autoimmun 2003; 20 (03) 237-245
- 48 Rawshani A, Sattar N, Franzén S. et al. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: A nationwide, register-based cohort study. Lancet 2018; 392 (10146): 477-486
- 49 Wang L, Li L, Liu J. et al. Associated factors and principal pathophysiological mechanisms of type 2 diabetes mellitus. Front Endocrinol 2025; 16: 1499565 . Accessed July 24, 2025 at: https://www.frontiersin.org/articles/10.3389/fendo.2025.1499565/full
- 50 Krause M, Heck TG, Bittencourt A. et al. The chaperone balance hypothesis: The importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Klink M, ed. Mediators Inflamm 2015; 2015: 249205 . Wiley. Accessed July 24, 2025 at: https://onlinelibrary.wiley.com/doi/10.1155/2015/249205
- 51 Archer AE, Von Schulze AT, Geiger PC. Exercise, heat shock proteins and insulin resistance. Philos Trans R Soc Lond B Biol Sci 2018; 373 (1738): 20160529
- 52 Bellini S, Barutta F, Mastrocola R, Imperatore L, Bruno G, Gruden G. Heat shock proteins in vascular diabetic complications: Review and future perspective. Int J Mol Sci 2017; 18 (12) 2709
- 53 Rowles JE, Keane KN, Gomes Heck T, Cruzat V, Verdile G, Newsholme P. Are heat shock proteins an important link between type 2 diabetes and Alzheimer disease?. Int J Mol Sci 2020; 21 (21) 8204
- 54 Halban PA, Polonsky KS, Bowden DW. et al. β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment. J Clin Endocrinol Metab 2014; 99 (06) 1983-1992
- 55 Dokladny K, Myers OB, Moseley PL. Heat shock response and autophagy. –cooperation and control. Autophagy 2015; 11 (02) 200-213
- 56 Kravats AN, Hoskins JR, Reidy M. et al. Functional and physical interaction between yeast Hsp90 and Hsp70. Proc Natl Acad Sci U S A 2018; 115: E2210-E2219 . Accessed July 24, 2025 at: https://pnas.org/doi/full/10.1073/pnas.1719969115
- 57 Henstridge DC, Whitham M, Febbraio MA. Chaperoning to the metabolic party: The emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol Metab 2014; 3 (08) 781-793
- 58 Brzozowska MM, Havula E, Allen RB, Cox MP. Genetics, adaptation to environmental changes and archaic admixture in the pathogenesis of diabetes mellitus in Indigenous Australians. Rev Endocr Metab Disord 2019; 20 (03) 321-332
- 59 Calderwood SK, Gong J, Murshid A. Extracellular HSPs: The complicated roles of extracellular HSPs in immunity. Front Immunol 2016; 7: 159 . Accessed January 23, 2026 at: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2016.00159
- 60 Muoio DM, Newgard CB. Mechanisms of disease: Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9 (03) 193-205
- 61 Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm 2010; 2010: 453892
- 62 Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015; 5 (01) 194-222
- 63 Gonzalez LL, Garrie K, Turner MD. Type 2 diabetes - An autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta Mol Basis Dis 2018; 1864 (11) 3805-3823
- 64 Chung J, Nguyen A-K, Henstridge DC. et al. HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci U S A 2008; 105 (05) 1739-1744
- 65 Clark A, Jones LC, de Koning E, Hansen BC, Matthews DR. Decreased insulin secretion in type 2 diabetes: A problem of cellular mass or function?. Diabetes 2001; 50 (Suppl. 01) S169-S171
- 66 Budzyński MA, Crul T, Himanen SV. et al. Chaperone co-inducer BGP-15 inhibits histone deacetylases and enhances the heat shock response through increased chromatin accessibility. Cell Stress Chaperones 2017; 22 (05) 717-728
- 67 Sapra G, Tham YK, Cemerlang N. et al. The small-molecule BGP-15 protects against heart failure and atrial fibrillation in mice. Nat Commun 2014; 5: 5705
- 68 Xing B, Wang L, Li Q. et al. Hsp70 plays an important role in high-fat diet induced gestational hyperglycemia in mice. J Physiol Biochem 2015; 71 (04) 649-658
- 69 Literáti-Nagy B, Tory K, Peitl B. et al. Improvement of insulin sensitivity by a novel drug candidate, BGP-15, in different animal studies. Metab Syndr Relat Disord 2014; 12 (02) 125-131
- 70 Literáti-Nagy B, Kulcsár E, Literáti-Nagy Z. et al. Improvement of insulin sensitivity by a novel drug, BGP-15, in insulin-resistant patients: A proof of concept randomized double-blind clinical trial. Horm Metab Res 2009; 41 (05) 374-380
- 71 Literáti-Nagy B, Péterfai E, Kulcsár E. et al. Beneficial effect of the insulin sensitizer (HSP inducer) BGP-15 on olanzapine-induced metabolic disorders. Brain Res Bull 2010; 83 (06) 340-344
- 72 Jing E, Sundararajan P, Majumdar ID. et al. Hsp90β knockdown in DIO mice reverses insulin resistance and improves glucose tolerance. Nutr Metab (Lond) 2018; 15: 11
- 73 Lei H, Venkatakrishnan A, Yu S, Kazlauskas A. Protein kinase A-dependent translocation of Hsp90 alpha impairs endothelial nitric-oxide synthase activity in high glucose and diabetes. J Biol Chem 2007; 282 (13) 9364-9371
- 74 Lei H, Romeo G, Kazlauskas A. Heat shock protein 90alpha-dependent translocation of annexin II to the surface of endothelial cells modulates plasmin activity in the diabetic rat aorta. Circ Res 2004; 94 (07) 902-909
- 75 Yuan J, Dunn P, Martinus RD. Detection of Hsp60 in saliva and serum from type 2 diabetic and non-diabetic control subjects. Cell Stress Chaperones 2011; 16 (06) 689-693
- 76 Fakhruddin S, Alanazi W, Jackson KE. Diabetes-induced reactive oxygen species: Mechanism of their generation and role in renal injury. J Diabetes Res 2017; 2017: 8379327
- 77 Mahmoud FF, Haines D, Dashti AA, El-Shazly S, Al-Najjar F. Correlation between heat shock proteins, adiponectin, and T lymphocyte cytokine expression in type 2 diabetics. Cell Stress Chaperones 2018; 23 (05) 955-965
- 78 Cherian PT, Al-Khairi I, Sriraman D. et al. Increased circulation and adipose tissue levels of DNAJC27/RBJ in obesity and type 2-diabetes. Front Endocrinol 2018; 9: 423 . Accessed July 24, 2025 at: https://www.frontiersin.org/article/10.3389/fendo.2018.00423/full
- 79 Nakhjavani M, Morteza A, Khajeali L. et al. Increased serum HSP70 levels are associated with the duration of diabetes. Cell Stress Chaperones 2010; 15 (06) 959-964
- 80 Atkin AS, Moin ASM, Al-Qaissi A, Sathyapalan T, Atkin SL, Butler AE. Plasma heat shock protein response to euglycemia in type 2 diabetes. BMJ Open Diabetes Res Care 2021; 9 (01) e002057
- 81 Sun X, Chen C, Liu H, Tang S. High glucose induces HSP47 expression and promotes the secretion of inflammatory factors through the IRE1α/XBP1/HIF-1α pathway in retinal Müller cells. Exp Ther Med 2021; 22 (06) 1411
- 82 Razzaque MS, Nazneen A, Taguchi T. Immunolocalization of collagen and collagen-binding heat shock protein 47 in fibrotic lung diseases. Mod Pathol 1998; 11 (12) 1183-1188
- 83 Sunamoto M, Kuze K, Tsuji H. et al. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress collagen accumulation in experimental glomerulonephritis. Lab Invest 1998; 78 (08) 967-972
- 84 Xia Z, Abe K, Furusu A. et al. Suppression of renal tubulointerstitial fibrosis by small interfering RNA targeting heat shock protein 47. Am J Nephrol 2008; 28 (01) 34-46
- 85 Kawasaki K, Ushioda R, Ito S, Ikeda K, Masago Y, Nagata K. Deletion of the collagen-specific molecular chaperone Hsp47 causes endoplasmic reticulum stress-mediated apoptosis of hepatic stellate cells. J Biol Chem 2015; 290 (06) 3639-3646
- 86 Wang Z, Li L. The plasmid encoding HSP47 enhances collagen expression and promotes skin wound healing in an alloxan-induced diabetic model. Cell Biol Int 2009; 33 (07) 705-710
- 87 Singh K, Agrawal NK, Gupta SK, Mohan G, Chaturvedi S, Singh K. Decreased expression of heat shock proteins may lead to compromised wound healing in type 2 diabetes mellitus patients. J Diabetes Complications 2015; 29 (04) 578-588
- 88 Ahmad S, Ahmad MFA, Khan S. et al. Exploring aldose reductase inhibitors as promising therapeutic targets for diabetes-linked disabilities. Int J Biol Macromol 2024; 280 (Pt 2): 135761
- 89 Craft S, Claxton A, Baker LD. et al. Effects of regular and long-acting insulin on cognition and Alzheimer's disease biomarkers: A pilot clinical trial. De La Monte S, ed. J Alzheimers Dis 2017; 57: 1325-1334 . SAGE Publications.
- 90 Riahi Y, Wikstrom JD, Bachar-Wikstrom E. et al. Autophagy is a major regulator of beta cell insulin homeostasis. Diabetologia 2016; 59 (07) 1480-1491
- 91 Dubey R, Patil K, Dantu SC. et al. Azadirachtin inhibits amyloid formation, disaggregates pre-formed fibrils and protects pancreatic β-cells from human islet amyloid polypeptide/amylin-induced cytotoxicity. Biochem J 2019; 476 (05) 889-907
- 92 Leissring MA, González-Casimiro CM, Merino B, Suire CN, Perdomo G. Targeting insulin-degrading enzyme in insulin clearance. Int J Mol Sci 2021; 22 (05) 2235
- 93 Guillemain G, Lacapere J-J, Khemtemourian L. Targeting hIAPP fibrillation: A new paradigm to prevent β-cell death?. Biochim Biophys Acta Biomembr 2022; 1864 (10) 184002
- 94 AlAnazi FH, Al-Kuraishy HM, Al-Gareeb AI. et al. Effects of neprilysin and neprilysin inhibitors on glucose homeostasis: Controversial points and a promising arena. J Diabetes 2023; 15 (05) 397-408
- 95 Sevcuka A, White K, Terry C. Factors that contribute to hIAPP amyloidosis in type 2 diabetes mellitus. Life (Basel) 2022; 12 (04) 583
- 96 Alrouji M, Al-Kuraishy HM, Al-Gareeb AI. et al. The potential role of human islet amyloid polypeptide in type 2 diabetes mellitus and Alzheimer's diseases. Diabetol Metab Syndr 2023; 15: 101 . Springer Science and Business Media LLC. Accessed July 26, 2025 at: https://dmsjournal.biomedcentral.com/articles/10.1186/s13098-023-01082-1
- 97 Höppener JWM, Lips CJM. Role of islet amyloid in type 2 diabetes mellitus. Int J Biochem Cell Biol 2006; 38 (5-6): 726-736
- 98 Li X-L, Chen T, Wong Y-S. et al. Involvement of mitochondrial dysfunction in human islet amyloid polypeptide-induced apoptosis in INS-1E pancreatic beta cells: An effect attenuated by phycocyanin. Int J Biochem Cell Biol 2011; 43 (04) 525-534
- 99 Guan H, Chow KM, Song E, Verma N, Despa F, Hersh LB. The mitochondrial peptidase pitrilysin degrades islet amyloid polypeptide in beta-cells. PLoS ONE 2015; 10 (07) e0133263
- 100 Alanazi M, Al-Kuraishy HM, Albuhadily AK. et al. The protective effect of amylin in type 2 diabetes: Yes or no. Eur J Pharmacol 2025; 996: 177593
- 101 Verma N, Despa F. The association between renal accumulation of pancreatic amyloid-forming amylin and renal hypoxia. Front Endocrinol (Lausanne) 2023; 14: 1104662
- 102 Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 2011; 91 (03) 795-826
- 103 Moya-Gudiño V, Altamirano-Bustamante NF, Revilla-Monsalve C, Altamirano-Bustamante MM. Decoding the contribution of IAPP amyloid aggregation to beta cell dysfunction: A systematic review and epistemic meta-analysis of type 1 diabetes. Int J Mol Sci 2025; 26 (02) 767
- 104 Herder C, Dalmas E, Böni-Schnetzler M, Donath MY. The IL-1 pathway in type 2 diabetes and cardiovascular complications. Trends Endocrinol Metab 2015; 26 (10) 551-563
- 105 Krause M, Ludwig MS, Heck TG, Takahashi HK. Heat shock proteins and heat therapy for type 2 diabetes: Pros and cons. Curr Opin Clin Nutr Metab Care 2015; 18 (04) 374-380 . Wolters Kluwer Health.
- 106 Blankenship AE, Kemna R, Kueck PJ. et al. Improving glycemic control via heat therapy in older adults at risk for Alzheimer's disease (FIGHT-AD): A pilot study. J Appl Physiol 2025; 138 (03) 720-730
- 107 Silverstein MG, Ordanes D, Wylie AT. et al. Inducing muscle heat shock protein 70 improves insulin sensitivity and muscular performance in aged mice. J Gerontol Ser A Sci Med Sci 2015; 70: 800-808 . Oxford University Press
- 108 Bruxel MA, Tavares AMV, Zavarize Neto LD. et al. Chronic whole-body heat treatment relieves atherosclerotic lesions, cardiovascular and metabolic abnormalities, and enhances survival time restoring the anti-inflammatory and anti-senescent heat shock response in mice. Biochimie 2019; 156: 33-46
- 109 Nonaka K, Une S, Komatsu M, Yamaji R, Akiyama J. Heat stress prevents the decrease in succinate dehydrogenase activity in the extensor digitorum longus of streptozotocin-induced diabetic rats. Physiol Res 2018; 67 (01) 117-126
- 110 Faulkner SH, Jackson S, Fatania G, Leicht CA. The effect of passive heating on heat shock protein 70 and interleukin-6: A possible treatment tool for metabolic diseases?. Temperature 2017; 4 (03) 292-304
- 111 Brunt VE, Wiedenfeld-Needham K, Comrada LN, Minson CT. Passive heat therapy protects against endothelial cell hypoxia-reoxygenation via effects of elevations in temperature and circulating factors. J Physiol 2018; 596 (20) 4831-4845
- 112 Coombs GB, Tremblay JC. Passive heat therapy for cerebral protection: New ideas of age-old concepts. J Physiol 2019; 597 (02) 371-372
- 113 Hafen PS, Preece CN, Sorensen JR, Hancock CR, Hyldahl RD. Repeated exposure to heat stress induces mitochondrial adaptation in human skeletal muscle. J Appl Physiol 2018; 125 (05) 1447-1455
- 114 Hoekstra SP, Bishop NC, Faulkner SH, Bailey SJ, Leicht CA. Acute and chronic effects of hot water immersion on inflammation and metabolism in sedentary, overweight adults. J Appl Physiol 2018; 125 (06) 2008-2018
- 115 Hooper PL. Hot-tub therapy for type 2 diabetes mellitus. N Engl J Med 1999; 341 (12) 924-925
- 116 Gupte AA, Bomhoff GL, Swerdlow RH, Geiger PC. Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 2009; 58 (03) 567-578
- 117 Pallubinsky H, Phielix E, Dautzenberg B. et al. Passive exposure to heat improves glucose metabolism in overweight humans. Acta Physiol (Oxf) 2020; 229 (04) e13488
- 118 Von Schulze AT, Deng F, Fuller KNZ. et al. Heat treatment improves hepatic mitochondrial respiratory efficiency via mitochondrial remodeling. Function (Oxf) 2021; 2 (02) zqab001
- 119 Kokura S, Adachi S, Manabe E. et al. Whole body hyperthermia improves obesity-induced insulin resistance in diabetic mice. Int J Hyperthermia 2007; 23 (03) 259-265
- 120 Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444 (7121): 860-867
- 121 Oishi Y, Manabe I. Macrophages in inflammation, repair and regeneration. Int Immunol 2018; 30 (11) 511-528
- 122 Ely BR, Clayton ZS, McCurdy CE. et al. Heat therapy improves glucose tolerance and adipose tissue insulin signaling in polycystic ovary syndrome. Am J Physiol Endocrinol Metab 2019; 317 (01) E172-E182
- 123 Capitano ML, Nemeth MJ, Mace TA. et al. Elevating body temperature enhances hematopoiesis and neutrophil recovery after total body irradiation in an IL-1-, IL-17-, and G-CSF-dependent manner. Blood 2012; 120 (13) 2600-2609
- 124 Capitano ML, Ertel BR, Repasky EA, Ostberg JR. Winner of the 2007 Society for Thermal Medicine Young Investigator Award. Fever-range whole body hyperthermia prevents the onset of type 1 diabetes in non-obese diabetic mice. Int J Hyperthermia 2008; 24 (02) 141-149
- 125 Sirviö J, Jolkkonen J, Pitkänen A. Adenohypophyseal hormone levels during hyperthermia. Endocrinologie 1987; 25 (01) 21-23
- 126 Leppäluoto J, Huttunen P, Hirvonen J, Väänänen A, Tuominen M, Vuori J. Endocrine effects of repeated sauna bathing. Acta Physiol Scand 1986; 128 (03) 467-470
- 127 Shepard AM, Bharwani A, Durisko Z, Andrews PW. Reverse engineering the febrile system. Q Rev Biol 2016; 91 (04) 419-457
- 128 Song K, Wang H, Kamm GB. et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 2016; 353 (6306): 1393-1398
- 129 Smadja DM. Hyperthermia for targeting cancer and cancer stem cells: Insights from novel cellular and clinical approaches. Stem Cell Rev Rep 2024; 20 (06) 1532-1539
- 130
Abreu MM,
Smith RL,
Ruskin K.
et al.
Previously unseen brain-eyelid thermal tunnel reveals biological waveguide and transorbital
thermophysical pathway to the brain. . Authorea; October 2020. Accessed January 23,
2026 at: https://www.authorea.com/users/364278/articles/485634-previously-unseen-brain-eyelid-thermal-tunnel-reveals-biological-waveguide-and-transorbital-thermophysical-pathway-to-the-brain?commit=0898be4891196fcea3a794524bfeda14f9de2c65
- 131 Delalat S, Sultana I, Osman H. et al. Dysregulated inflammation, oxidative stress, and protein quality control in diabetic HFpEF: Unraveling mechanisms and therapeutic targets. Cardiovasc Diabetol 2025; 24 (01) 211
- 132 Calabrese V, Mancuso C, Sapienza M. et al. Oxidative stress and cellular stress response in diabetic nephropathy. Cell Stress Chaperones 2007; 12 (04) 299-306
- 133 Lazaro I, Oguiza A, Recio C. et al. Targeting HSP90 ameliorates nephropathy and atherosclerosis through suppression of NF-κB and STAT signaling pathways in diabetic mice. Diabetes 2015; 64 (10) 3600-3613
- 134 Barutta F, Pinach S, Giunti S. et al. Heat shock protein expression in diabetic nephropathy. Am J Physiol Renal Physiol 2008; 295 (06) F1817-F1824
- 135 Capitano ML, Ertel BR, Repasky EA, Ostberg JR. Winner of the 2007 Society for Thermal Medicine Young Investigator Award. Fever-range whole body hyperthermia prevents the onset of type 1 diabetes in non-obese diabetic mice. Int J Hyperthermia 2008; 24 (02) 141-149
- 136 Roth J, Blatteis CM. Mechanisms of fever production and lysis: Lessons from experimental LPS fever. Compr Physiol 2014; 4 (04) 1563-1604
- 137 Maiese K. New insights for oxidative stress and diabetes mellitus. Oxid Med Cell Longev 2015; 2015: 875961
- 138 Hirsch GE, Heck TG. Inflammation, oxidative stress and altered heat shock response in type 2 diabetes: The basis for new pharmacological and non-pharmacological interventions. Arch Physiol Biochem 2022; 128 (02) 411-425
- 139 Lee J-F, Wang D, Hsu Y-H, Chen HI. Oxidative and nitrosative mediators in hepatic injury caused by whole body hyperthermia in rats. Chin J Physiol 2008; 51 (02) 85-93
- 140 Ilangovan G, Osinbowale S, Bratasz A. et al. Heat shock regulates the respiration of cardiac H9c2 cells through upregulation of nitric oxide synthase. Am J Physiol Cell Physiol 2004; 287 (05) C1472-C1481
- 141 Cotter MA, Cameron NE. Effect of the NAD(P)H oxidase inhibitor, apocynin, on peripheral nerve perfusion and function in diabetic rats. Life Sci 2003; 73 (14) 1813-1824
- 142 Anderson CP, Pekas EJ, Park S-Y. Microvascular dysfunction in peripheral artery disease: Is heat therapy a viable treatment?. Int J Environ Res Public Health 2021; 18 (05) 2384
- 143 Jia G, Bai H, Mather B, Hill MA, Jia G, Sowers JR. Diabetic vasculopathy: Molecular mechanisms and clinical insights. Int J Mol Sci 2024; 25 (02) 804
- 144 Salybekov AA, Kobayashi S, Asahara T. Characterization of endothelial progenitor cell: Past, present, and future. Int J Mol Sci 2022; 23 (14) 7697
- 145 Rabczynski M, Fiodorenko-Dumas Z, Adamiec R, Paprocka-Borowicz M, Dumas I. Role of anti-HSP 60/65 antibodies in atherogenesis in patients with type 2 diabetes and lower limb ischemia. J Physiol Pharmacol 2012; 63 (06) 691-696
- 146 Teodoru M, Stoia O-M, Vladoiu M-G, Tonch-Cerbu AK. The role of HSP47 in thrombotic disorders: Molecular mechanism and therapeutic potential. Curr Issues Mol Biol 2025; 47 (04) 283
- 147 Hemanthakumar KA, Fang S, Anisimov A, Mäyränpää MI, Mervaala E, Kivelä R. Cardiovascular disease risk factors induce mesenchymal features and senescence in mouse cardiac endothelial cells. eLife 2021; 10: e62678
- 148 Khalil H, Kanisicak O, Vagnozzi RJ. et al. Cell-specific ablation of Hsp47 defines the collagen-producing cells in the injured heart. JCI Insight 2019; 4 (15) e128722
- 149 Blasi C, Kim E, Knowlton AA. Improved metabolic control in diabetes, HSP60, and proinflammatory mediators. Autoimmune Dis 2012; 2012: 346501
- 150 Gellai R, Hodrea J, Lenart L. et al. Role of O-linked N-acetylglucosamine modification in diabetic nephropathy. Am J Physiol Renal Physiol 2016; 311 (06) F1172-F1181
- 151 Fadini GP, Ferraro F, Quaini F, Asahara T, Madeddu P. Concise review: diabetes, the bone marrow niche, and impaired vascular regeneration. Stem Cells Transl Med 2014; 3 (08) 949-957
- 152 Makino H, Okada S, Nagumo A. et al. Decreased circulating CD34+ cells are associated with progression of diabetic nephropathy. Diabet Med 2009; 26 (02) 171-173
- 153 Tanaka R, Masuda H, Fujimura S. et al. Quality-quantity control culture enhances vasculogenesis and wound healing efficacy of human diabetic peripheral blood CD34+ cells. Stem Cells Transl Med 2018; 7 (05) 428-438
- 154 Tanaka R, Ito-Hirano R, Fujimura S. et al. Ex vivo conditioning of peripheral blood mononuclear cells of diabetic patients promotes vasculogenic wound healing. Stem Cells Transl Med 2021; 10 (06) 895-909
- 155 Ohtake T, Itaba S, Salybekov AA. et al. Repetitive administration of cultured human CD34+ cells improve adenine-induced kidney injury in mice. World J Stem Cells 2023; 15 (04) 268-280
- 156 Hassanpour M, Salybekov AA, Kobayashi S, Asahara T. CD34 positive cells as endothelial progenitor cells in biology and medicine. Front Cell Dev Biol 2023; 11: 1128134
- 157 Hassanpour M, Salybkov AA, Kobayashi S, Asahara T. Anti-inflammatory Prowess of endothelial progenitor cells in the realm of biology and medicine. NPJ Regen Med 2024; 9 (01) 27
- 158 Raleigh MJ, Pasricha SV, Nauth A, Ward MR, Connelly KA. Endothelial progenitor cells for diabetic cardiac and kidney disease. Stem Cells Transl Med 2024; 13 (07) 625-636
- 159 Wang X, Gu H, Huang W. et al. Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes 2016; 65 (10) 3111-3128
- 160 Si S-C, Yang W, Luo H-Y, Ma YX, Zhao H, Liu J. Association of bone turnover biomarkers with severe intracranial and extracranial artery stenosis in type 2 diabetes mellitus patients. World J Diabetes 2023; 14 (05) 594-605
- 161 Salybekov AA, Tashov K, Sheng Y. et al. Cardioimmunology in health and diseases: Impairment of the cardio-spleno-bone marrow axis following myocardial infarction in diabetes mellitus. Int J Mol Sci 2024; 25 (21) 11833
- 162 Gruden G, Bruno G, Chaturvedi N. et al; EURODIAB Prospective Complications Study Group. Serum heat shock protein 27 and diabetes complications in the EURODIAB prospective complications study: A novel circulating marker for diabetic neuropathy. Diabetes 2008; 57 (07) 1966-1970
- 163 Yilmaz A, Gedikbasi A, Yuruk Yildirim Z. et al. Higher urine heat shock protein 70/creatinine ratio in type 1 diabetes mellitus. Ren Fail 2016; 38 (03) 404-410
- 164 Brudzynski K. Insulitis-caused redistribution of heat-shock protein HSP60 inside beta-cells correlates with induction of HSP60 autoantibodies. Diabetes 1993; 42 (06) 908-913
- 165 Brudzynski K, Cunningham IA, Martinez V. A family of hsp60-related proteins in pancreatic beta cells of non-obese diabetic (NOD) mice. J Autoimmun 1995; 8 (06) 859-874
- 166 Burkart V, Germaschewski L, Schloot NC, Bellmann K, Kolb H. Deficient heat shock protein 70 response to stress in leukocytes at onset of type 1 diabetes. Biochem Biophys Res Commun 2008; 369 (02) 421-425
- 167 Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 2001; 14 (03) 303-313
- 168 Vig S, Buitinga M, Rondas D. et al. Cytokine-induced translocation of GRP78 to the plasma membrane triggers a pro-apoptotic feedback loop in pancreatic beta cells. Cell Death Dis 2019; 10 (04) 309
- 169 Ocaña GJ, Sims EK, Watkins RA. et al. Analysis of serum Hsp90 as a potential biomarker of β cell autoimmunity in type 1 diabetes. PLoS ONE 2019; 14 (01) e0208456
- 170 Dai T, Patel-Chamberlin M, Natarajan R. et al. Heat shock protein 27 overexpression mitigates cytokine-induced islet apoptosis and streptozotocin-induced diabetes. Endocrinology 2009; 150 (07) 3031-3039
- 171 Dodd SL, Hain B, Senf SM, Judge AR. Hsp27 inhibits IKKbeta-induced NF-kappaB activity and skeletal muscle atrophy. FASEB J 2009; 23 (10) 3415-3423
- 172 Diane A, Abunada H, Khattab N, Moin ASM, Butler AE, Dehbi M. Role of the DNAJ/HSP40 family in the pathogenesis of insulin resistance and type 2 diabetes. Ageing Res Rev 2021; 67: 101313
- 173 Liyanagamage DSNK, Martinus RD. Role of mitochondrial stress protein HSP60 in diabetes-induced neuroinflammation. Mediators Inflamm 2020; 2020: 8073516
- 174 Zimbone S, Di Rosa MC, Chiechio S, Giuffrida ML. Exploring the role of Hsp60 in Alzheimer's disease and type 2 diabetes: Suggestion for common drug targeting. Int J Mol Sci 2023; 24 (15) 12456
