Synthesis
DOI: 10.1055/a-2784-2600
Paper
Published as part of the Special Issue dedicated to Prof. Franziska Schoenebeck, recipient of the 2025 Dr. Margaret Faul Women in Chemistry Award

Selective Reductions of Complex Pyridines via NTf-Pyridinium Salts

Authors


Supported by: National Institutes of Health S10OD036347
This work was supported by funds from the National Institutes of Health (NIH) under award numbers R01GM124094, R35GM156435, and S10OD036347.


Graphical Abstract

Abstract

Piperidines are widely found in biologically active compounds, and accessing these N-heterocycles from pyridines is a commonly used strategy. However, this approach is challenging when pyridines are embedded in complex structures, such as those found in pharmaceutical compounds. Here, we present a sequential approach to piperidines that commences with a hydride addition to NTf-activated pyridinium salts. In this method, we combined tris(pentafluorophenyl)borane as a catalyst with a silane reducing agent to achieve 4-selective mono-reduction, and then combined it with metal-catalyzed reductions to obtain tetrahydropiperidine and piperidine derivatives. The process operates on a broad range of pyridines with various functional groups and substitution patterns, as well as on pyridine-containing drugs.



Publication History

Received: 07 December 2025

Accepted after revision: 08 January 2026

Accepted Manuscript online:
19 January 2026

Article published online:
11 February 2026

© 2026. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Frolov NA, Vereshchagin AN. Int J Mol Sci 2023; 24: 2937
  • 2 Marshall CM, Federice JG, Bell CN, Cox PB, Njardarson JT. J Med Chem 2024; 67: 11622
  • 3 Vitaku E, Smith DT, Njardarson JT. J Med Chem 2014; 57: 10257
  • 4 Goel P, Alam O, Naim MJ, Nawaz F, Iqbal M, Alam MI. Eur J Med Chem 2018; 157: 480
  • 5 Liu GQ, Opatz T. Adv Heterocycl Chem 2018; 125: 107
  • 6 Källström S, Leino R. Bioorg Med Chem 2008; 16: 601
  • 7 Weintraub PM, Sabol JS, Kane JA, Borcherding DR. Tetrahedron 2003; 59: 2953
  • 8 Lyons TW, Leibler INM, He CQ, Gadamsetty S, Estrada GJ, Doyle AG. J Org Chem 2024; 89: 1438
  • 9 Williams S, Qi LM, Cox RJ, Kumar P, Xiao JL. Org Biomol Chem 2024; 22: 1010
  • 10 Despois A, Cramer N. ChemRxiv. Cambridge: Cambridge Open Engage; 2025.
  • 11 Comparini LM, Pineschi M. Molecules 2023; 28
  • 12 Glorius F. Org Biomol Chem 2005; 3: 4171
  • 13 Zhang FH, Sasmal HS, Rana D, Glorius F. J Am Chem Soc 2024; 146: 18682
  • 14 Dolewski RD, Hilton MC, McNally A. Synlett 2018; 29: 8
  • 15 Fan XT, Zheng JH, Li ZH, Wang HD. J Am Chem Soc 2015; 137: 4916
  • 16 Kaithal A, Chatterjee B, Gunanathan C. Org Lett 2016; 18: 3402
  • 17 Ji PF, Feng XY, Veroneau SS, Song Y, Lin WB. J Am Chem Soc 2017; 139: 15600
  • 18 Tamang SR, Singh A, Unruh DK, Findlater M. ACS Catal 2018; 8: 6186
  • 19 Königs CDF, Klare HFT, Oestreich M. Angew Chem Int Ed 2013; 52: 10076
  • 20 Gutsulyak DV, van der Est A, Nikonov GI. Angew Chem Int Ed 2011; 50: 1384
  • 21 Oshima K, Ohmura T, Suginome M. J Am Chem Soc 2011; 133: 7324
  • 22 Shu M, Park S. Chem Commun 2025; 61: 15674
  • 23 Heusler A, Fliege J, Wagener T, Glorius F. Angew Chem Int Ed 2021; 60: 13793
  • 24 Huang X, Shi Q, Lai G, Angew WHL. Angew Chem Int Ed. 2025
  • 25 Hackel T, McGrath NA. Molecules 2019; 24
  • 26 Geier SJ, Chase PA, Stephan DW. Chem Commun 2010; 46: 4884
  • 27 Gandhamsetty N, Park S, Chang S. J Am Chem Soc 2015; 137: 15176
  • 28 Oestreich M, Hermeke J, Mohr J. Chem Soc Rev 2015; 44: 2202
  • 29 Liu DH, Pflüger PM, Outlaw A. et al. J Am Chem Soc 2024; 146: 11866
  • 30 Glorius F, Spielkamp N, Holle S, Goddard R, Lehmann CW. Angew Chem Int Ed 2004; 43: 2850