Subscribe to RSS

DOI: 10.1055/a-2780-6932
Copper Catalysts in Oxidation/Dehydrogenation and Oxidative Functionalization of Alcohols
Authors
This research was funded by NSERC Discovery Grant (RGPIN-2020-07211), Le Fonds de Recherche du Québec (FRQNT-2020-RS4-265155-CCVC), Centre in Green Chemistry and Catalysis (CGCC), MITACS/Paraza Pharma and the Richard and Edith Strauss Foundation.

Abstract
This graphical review highlights recent advances in copper-catalyzed oxidation and dehydrogenation of alcohols to the corresponding carbonyl compounds and their use in dehydrogenative coupling reactions. It primarily covers the developments from 2015 to the present. Different oxidative and dehydrogenative pathways are discussed under homogeneous and heterogeneous conditions. Key mechanistic features, catalytic pathways, and substrate trends for electron-donating and electron-withdrawing groups (EDG and EWG) are outlined. Advances in catalyst design, the integration of copper with other metals for structural supports, such as nanoparticles and metal–organic frameworks (MOFs), are illustrated. The review further emphasizes the expanding synthetic applications of copper-catalyzed alcohol oxidation or dehydrogenation in one-pot tandem transformations, leading to imines, pyridines, pyrimidines, quinazolines, quinones, and related heterocycles, showcasing the versatility of this sustainable catalytic platform.
Key words
copper catalysis - oxidation - alcohol dehydrogenation - heterogeneous pathway - homogeneous pathway - electron-donating group - electron-withdrawing group - one-pot synthesis - acceptorlessPublication History
Received: 07 November 2025
Accepted after revision: 31 December 2025
Article published online:
05 February 2026
© 2026. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Semmelhack MF, Schmid CR, Cortes DA, Chou CS. J. Am. Chem. Soc. 1984; 106: 3374
- 1b Jiang N, Ragauskas AJ. Org. Lett. 2005; 7: 3689
- 1c Hoover JM, Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
- 1d Prathap KJ, Maayan G. Chem. Commun. 2015; 51: 11096
- 1e Wang L, Bie Z, Shang S, Lv Y, Li G, Niu J, Gao S. RSC Adv. 2016; 6: 35008
- 1f Mei Q, Liu H, Yang Y, Liu H, Li S, Zhang P, Han B. ACS Sustainable Chem. Eng. 2018; 6: 2362
- 1g Chen B.-T, Bukhryakov KV, Sougrat R, Rodionov VO. ACS Catal. 2015; 5: 1313
- 1h Guo B, Xue J.-Y, Li H.-X, Tan D.-W, Lang J.-P. RSC Adv. 2016; 6: 51687
- 1i Marais L, Burés J, Jordaan JH. L, Mapolie S, Swarts AJ. Org. Biomol. Chem. 2017; 15: 6926
- 1j Wang L, Bie Z, Shang S, Li G, Niu J, Gao S. ChemistrySelect 2018; 3: 3386
- 1k Khatua M, Goswami B, Hans S, Kamal Mazumder S, Samanta S. Inorg. Chem. 2022; 61: 17777
- 1l Peng Q, Song B, Sun N, Zhou X, Gong S, Xie J. Catal. Lett. 2023; 153: 2665
- 1m Drymona M, Kaplanai E, Vougioukalakis GC. Eur. J. Org. Chem. 2024; 27: e202301179
- 1n Heshmatnia F, Zupanc A, Eronen A, Lagerspets E, Install J, Repo T. ChemSusChem 2025; 18: e202402236
- 2a Xu B, Lumb JP, Arndtsen BA. Angew. Chem. Int. Ed. 2015; 54: 4208
- 2b McCann SD, Stahl SS. J. Am. Chem. Soc. 2016; 138: 199
- 2c McCann SD, Lumb JP, Arndtsen BA, Stahl SS. ACS Cent. Sci. 2017; 3: 314
- 2d Hans S, Ambika K, Mohd D, Muskan A, Ranaut S, Changotra A, Mazumder S, Samanta S. Inorg. Chem. 2025; 64: 7930
- 2e Ünver H, Kani I. Polyhedron 2017; 134: 257
- 2f Hazra S, Martins LM. D. R. S, Guedes da Silva MF. C, Pombeiro AJ. L. RSC Adv. 2015; 5: 90079
- 2g Ünver H, Kani I. J. Chem. Sci. 2018; 130: 33
- 2h Ünver H. Transition Met. Chem. 2018; 43: 641
- 2i Wu C, Liu B, Geng X, Zhang Z, Liu S, Hu Q. Polyhedron 2018; 158: 334
- 2j Tan D.-W, Li H.-X, Zhang M.-J, Yao J.-L, Lang J.-P. ChemCatChem 2017; 9: 1113
- 3a Poreddy R, Engelbrekt C, Riisager A. Catal. Sci. Technol. 2015; 5: 2467
- 3b Chauhan P, Yan N. RSC Adv. 2015; 5: 37517
- 3c Mirsafaei R, Heravi MM, Hosseinnejad T, Ahmadi S. Appl. Organomet. Chem. 2016; 30: 823
- 3d Xu B, Senthilkumar S, Zhong W, Shen Z, Lu C, Liu X. RSC Adv. 2020; 10: 26142
- 3e Malik MA, Surepally R, Akula N, Cheedarala RK, Alshehri AA, Alzahrani KA. Catalysts 2023; 13: 55
- 3f Wang Z, Zhao R, Lin J, Liu C, Jia Q, Chu C. Tetrahedron 2024; 151: 133769
- 3g Qi Y, Luan Y, Yu J, Peng X, Wang G. Chem. Eur. J. 2015; 21: 1589
- 3h Kim BR, Oh JS, Kim J, Lee CY. Bull. Korean Chem. Soc. 2015; 36: 2799
- 3i Li J, Gao H, Tan L, Luan Y, Yang M. Eur. J. Inorg. Chem. 2016; 4906
- 3j Hou J, Luan Y, Tang J, Wensley AM, Yang M, Lu Y. J. Mol. Catal. A: Chem. 2015; 407: 53
- 3k Yusniyanti F, Hara T, Makishima K, Kurniawan E, Fujimura T, Sasai R, Moriyoshi C, Kawaguchi S, Permana Y, Ichikuni N. Chem. Asian J. 2023; 18: e202300727
- 3l Sun D, Misu T, Yamada Y, Sato S. Appl. Catal. A 2019; 582: 117109
- 3m Kaźmierczak K, Salisu A, Pinel C, Besson M, Michel C, Perret N. Catal. Commun. 2021; 148: 106179
- 3n Kurniawan E, Hara T, Permana Y, Ichikuni N, Shimazu S. Chem. Lett. 2022; 51: 334
- 3o Meng C, Liu S, Zhang X, Zhao D, Tong M, Chen G, Long Z. React. Kinet. Mech. Catal. 2023; 136: 953
- 3p Zhao H, Chen Q, Wei L, Jiang Y, Cai M. Tetrahedron 2015; 71: 8725
- 3q Carbó-López M, Chavant PY, Molton F, Royal G, Blandin V. RSC Adv. 2016; 6: 36602
- 3r Fernandes AE, Riant O, Jensen KF, Jonas AM. Angew. Chem. Int. Ed. 2016; 55: 11044
- 3s Sand H, Weberskirch R. Polym. Int. 2017; 66: 428
- 3t Badalyan A, Stahl SS. Nature 2016; 535: 406
- 3u Porcheddu A, Colacino E, Cravotto G, Delogu F, De Luca L. Beilstein. J. Org. Chem. 2017; 13: 2049
- 4a Lobo Sacchelli BA, Onguene SM. P, Almeida RS. M, Antunes AM. M, Nesterov DS, Andrade LH, Alegria EC. B. A, Prechtl MH. G. Catal. Sci. Technol. 2024; 14: 6503
- 4b Dutta I, De S, Yadav S, Mondol R, Bera JK. J. Organomet. Chem. 2017; 849–850: 117
- 4c Sobhani S, Hosseini Moghadam H, Derakhshan SR, Sansano JM. RSC Adv. 2021; 11: 19121
- 4d Pahalagedara MN, Pahalagedara LR, Kriz D, Chen S.-Y, Beaulieu F, Thalgaspitiya W, Suib SL. Appl. Catal. B 2016; 188: 227
- 4e Wu Y, Zhu Q, Xu H, Yang J, Wang Y, Wang C, Hu Z, Zhang Z. Chem. Asian J. 2025; 20: e202400984
- 4f Bagheri M, Melillo A, Ferrer B, Masoomi MY, Garcia H. Chem. Eur. J. 2021; 27: 14273
- 4g Patel NB, Vala N, Shukla A, Neogi S, Mishra MK. Inorg. Chim. Acta 2023; 554: 121546
- 4h Li M, Cárdenas-Lizana F, Keane MA. Appl. Catal. A 2018; 557: 145
- 4i Song J, Che C, Dai Y, Qin J, Yang C, Chen Z, Ma K, Han Y, Long Y. ACS Catal. 2025; 15: 1170
- 4j Xu Z, Wang D.-S, Yu X, Yang Y, Wang D. Adv. Synth. Catal. 2017; 359: 3332
- 5a Das S, Sinha S, Samanta D, Mondal R, Chakraborty G, Brandão P, Paul ND. J. Org. Chem. 2019; 84: 10160
- 5b Xu J, Chen Q, Luo Z, Tang X, Zhao J. RSC Adv. 2019; 9: 28764
- 5c Ha MT, Nguyen NT, Tran NH, Ho QV, Son NT, Nguyen VH, Nguyen H, Do DV, Hung TQ, Mai BK, Dang TT. Chem. Asian J. 2022; 17: e202200909
- 5d Chetia S, Sarmah S, Dutta A, Sarma D. Eur. J. Org. Chem. 2023; 26: e202300390
- 5e Hans S, Adham M, Khatua M, Samanta S. J. Org. Chem. 2024; 89: 18090
- 5f Tan D.-W, Li H.-X, Zhu D.-L, Li H.-Y, Young DJ, Yao J.-L, Lang J.-P. Org. Lett. 2018; 20: 608
- 5g Jayakumar J, Reddy SR. Org. Biomol. Chem. 2024; 22: 8472
- 6a Elavarasan S, Bhaumik A, Sasidharan M. ChemCatChem 2019; 11: 4340
- 6b Hu W, Zhang Y, Zhu H, Ye D, Wang D. Green Chem. 2019; 21: 5345
- 6c Gupta S, Maji A, Panja D, Halder M, Kundu S. J. Catal. 2022; 413: 1017
- 6d Parsai P, Choudhary N, Sahu R, Mobin SM. Chem. Asian J. 2025; 20: e202401395
- 6e Chaurasia SR, Tiwari AR, Bhanage BM. Mol. Catal. 2019; 478: 110565
- 6f Zhu W, Reinhold JS, Lu J, Xu D, Guo T, Luo W, Zhang B. Chem. Eng. Sci. 2024; 290: 119899
- 7a Satish G, Polu A, Kota L, Ilangovan A. Org. Biomol. Chem. 2019; 17: 4774
- 7b Wang Y, Meng X, Chen G, Zhao P. Catal. Commun. 2018; 104: 106
- 7c Upadhyaya K, Thakur RK, Shukla SK, Tripathi RP. J. Org. Chem. 2016; 81: 5046
- 7d Khutia B, Sinha D, Ray S, Shee U, Rajak KK. RSC Adv. 2016; 6: 52884
- 7e Hu Y, Li S, Li H, Li Y, Li J, Duanmu C, Li B. Org. Chem. Front. 2019; 6: 2744
- 7f Jongcharoenkamol J, Naksing P, Nimnuan N, Singh T, Chatwichien J, Temkitthawon P, Sriwattanawarunyoo C, Choommongkol V, Meepowpan P, Kerdphon S. RSC Adv. 2023; 13: 27657
- 8a Qiao B, Zhang L, Li R. RSC Adv. 2015; 5: 93463
- 8b Xu Z, Yu X, Sang X, Wang D. Green Chem. 2018; 20: 2571
- 8c Nguyen N.-K, Tran DL, Hung TQ, Le TM, Son NT, Trinh QT, Dang TT, Langer P. Tetrahedron Lett. 2021; 68: 152936
- 8d Nguyen N.-K, Nam DH, Phuc BV, Nguyen VH, Trinh QT, Hung TQ, Dang TT. Mol. Catal. 2021; 505: 111462
- 9a Dang TT, Seayad AM. Chem. Asian J. 2017; 12: 2383
- 9b You Q, Wang F, Wu C, Shi T, Min D, Chen H, Zhang W. Org. Biomol. Chem. 2015; 13: 6723
- 9c Shanmugam S, Radhakrishna K, Jayakumar M, Viswanathamurthi P, Malecki JG. Inorg. Chim. Acta 2025; 583: 122678
- 9d Kukreti P, Datta P, Chauhan R, Pattnaik T, Sharma K, Ghosh K. Chem. Asian J. 2025; 20: e70278