Subscribe to RSS
DOI: 10.1055/a-2779-7718
Bildgebung der Konnektivität von Hirntumoren
Article in several languages: deutsch | EnglishAuthors
Zusammenfassung
Hintergrund
Hirntumore, insbesondere höhergradige hirneigene Tumore, weisen eine ungünstige Prognose auf, beim Glioblastom liegt die 5-Jahres-Überlebensrate beispielsweise bei unter 5%. Neue Erkenntnisse aus der Hirntumorforschung zeigen, dass die Integration des Tumors in neuronale und gliale Netzwerke sowie die Ausbildung von Netzwerken aus Gliomzellen über die makroskopischen Tumorgrenzen hinaus wesentlich zur Progression und Therapieresistenz des Tumors beitragen. Um diese Erkenntnisse bildgebend zu erfassen, sind innovative Verfahren erforderlich, die Hirntumore als systemische Erkrankungen des Gehirns abbilden können.
Methode
Diese Übersichtsarbeit stellt aktuelle bildgebende Verfahren zur Analyse tumorassoziierter funktioneller und struktureller Konnektivität dar. Im Fokus stehen die resting-state funktionelle MRT (rs-fMRT) und die Diffusions-Tensor-Bildgebung (DTI) mit Traktografie.
Ergebnisse
Veränderungen der funktionellen Konnektivität bei Gliompatienten lassen sich mittels rs-fMRT erfassen und quantifizieren. Diese Veränderungen sind assoziiert mit der Tumorbiologie, dem Gesamtüberleben und der kognitiven Leistung. Rs-MRT-Parameter können zur Prognoseeinschätzung und zur Entwicklung neuer Therapieansätze beitragen, die den Netzwerkcharakter des Tumors adressieren. Die quantitative, strukturelle Konnektivitätsanalyse kann zusätzliche Erkenntnisse zur Tumorintegration in die Netzwerkarchitektur des Gehirns liefern. Die DTI-gestützte Traktografie wird insbesondere in der Neurochirurgie eingesetzt, da sie den Lagebezug zwischen Tumor und Faserbahnen abbildet.
Schlussfolgerung
Die bildgebende Analyse tumorassoziierter Netzwerkveränderungen ermöglicht ein vertieftes Verständnis der Hirntumorbiologie und kann die Entwicklung netzwerkgerichteter Therapieansätze unterstützen. Insbesondere konnektivitätsbasierte Verfahren wie rs-fMRT und DTI-Traktografie bieten großes Potenzial, um präoperative Planung, Prognoseabschätzung und personalisierte Therapiekonzepte von Hirntumorpatienten weiter zu verbessern.
Kernaussagen
-
Gliomzellen bilden Netzwerke, die über makroskopische Tumorgrenzen hinausgehen und Therapieresistenz fördern.
-
Gliomzellen bilden Synapsen mit Neuronen und nutzen neuronale Signale für Tumorwachstum.
-
Netzwerkveränderungen sind mittelst rs-fMRI und DTI darstellbar und quantifizierbar.
-
Tumor-assoziierte Netzwerkveränderungen in der Bildgebung korrelieren mit Tumorbiologie und klinischer Prognose.
-
Bildgebende Netzwerkmarker können Therapieplanung und -überwachung optimieren und Entwicklung neuer Therapiekonzepte unterstützen.
Zitierweise
-
Suvak S, Wunderlich S, Stoecklein V et al. Imaging of Brain Tumor Connectivity. Rofo 2026; DOI 10.1055/a-2779-7718
Publication History
Received: 08 September 2025
Accepted after revision: 19 December 2025
Article published online:
06 February 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Weller M, van den Bent M, Tonn JC. et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 2017; 18: e315-e329
- 2 Delgado-López PD, Corrales-García EM. Survival in glioblastoma: a review on the impact of treatment modalities. Clin Transl Oncol 2016; 18: 1062-1071
- 3 Salvalaggio A, Pini L, Bertoldo A. et al. Glioblastoma and brain connectivity: the need for a paradigm shift. Lancet Neurol 2024; 23: 740-748
- 4 Sahm F, Capper D, Jeibmann A. et al. Addressing diffuse glioma as a systemic brain disease with single-cell analysis. Arch Neurol 2012; 69: 523-526
- 5 Winkler F, Venkatesh HS, Amit M. et al. Cancer neuroscience: State of the field, emerging directions. Cell 2023; 186: 1689-1707
- 6 Osswald M, Jung E, Sahm F. et al. Brain tumour cells interconnect to a functional and resistant network. Nature 2015; 528: 93-98
- 7 Venkataramani V, Yang Y, Schubert MC. et al. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell 2022; 185: 2899-2917.e31
- 8 Venkataramani V, Tanev DI, Strahle C. et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 2019; 573: 532-538
- 9 Venkatesh HS, Morishita W, Geraghty AC. et al. Electrical and synaptic integration of glioma into neural circuits. Nature 2019; 573: 539-545
- 10 Jung E, Osswald M, Ratliff M. et al. Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma. Nat Commun 2021; 12: 1014
- 11 Stoecklein VM, Stoecklein S, Galiè F. et al. Resting-state fMRI detects alterations in whole brain connectivity related to tumor biology in glioma patients. Neuro Oncol 2020; 22: 1388-1398
- 12 Hua B, Ding X, Xiong M. et al. Alterations of functional and structural connectivity in patients with brain metastases. PLoS One 2020; 15: e0233833
- 13 Sprugnoli G, Rigolo L, Faria M. et al. Tumor BOLD connectivity profile correlates with glioma patients’ survival. Neurooncol Adv 2022; 4: vdac153
- 14 Daniel AGS, Park KY, Roland JL. et al. Functional connectivity within glioblastoma impacts overall survival. Neuro Oncol 2021; 23: 412-421
- 15 Daniel AGS, Hacker CD, Lee JJ. et al. Homotopic functional connectivity disruptions in glioma patients are associated with tumor malignancy and overall survival. Neurooncol Adv 2021; 3: vdab176
- 16 Luckett PH, Olufawo M, Lamichhane B. et al. Predicting survival in glioblastoma with multimodal neuroimaging and machine learning. J Neurooncol 2023; 164: 309-320
- 17 Angstwurm P, Hense K, Rosengarth K. et al. Attenuation of the BOLD fMRI signal and changes in functional connectivity affecting the whole brain in presence of brain metastasis. Cancers (Basel) 2024; 16
- 18 Salvalaggio A, Pini L, Gaiola M. et al. White matter tract density index prediction model of overall survival in glioblastoma. JAMA Neurol 2023; 80: 1222-1231
- 19 Wei Y, Li C, Cui Z. et al. Structural connectome quantifies tumour invasion and predicts survival in glioblastoma patients. Brain 2023;
- 20 de Godoy LL, Chen YJ, Chawla S. et al. Prognostication of overall survival in patients with brain metastases using diffusion tensor imaging and dynamic susceptibility contrast-enhanced MRI. Br J Radiol 2022; 95: 20220516
- 21 Urut DU, Karabulut D, Hereklioglu S. et al. Diffusion tensor imaging: survival analysis prediction in breast cancer patients. Radiologie (Heidelb) 2024; 64: 54-59
- 22 Smitha KA, Akhil Raja K, Arun KM. et al. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J 2017; 30: 305-317
- 23 Ogawa S, Menon RS, Kim SG. et al. On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 1998; 27: 447-474
- 24 Kim SG, Uğurbil K. Comparison of blood oxygenation and cerebral blood flow effects in fMRI: estimation of relative oxygen consumption change. Magn Reson Med 1997; 38: 59-65
- 25 Logothetis NK, Pauls J, Augath M. et al. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001; 412: 150-157
- 26 Poustchi-Amin M, Mirowitz SA, Brown JJ. et al. Principles and applications of echo-planar imaging: a review for the general radiologist. Radiographics 2001; 21: 767-779
- 27 Stehling MK, Turner R, Mansfield P. Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science 1991; 254: 43-50
- 28 Kundu P, Voon V, Balchandani P. et al. Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals. Neuroimage 2017; 154: 59-80
- 29 Biswal B, Yetkin FZ, Haughton VM. et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995; 34: 537-541
- 30 Beckmann CF, DeLuca M, Devlin JT. et al. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 2005; 360: 1001-1013
- 31 Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009; 10: 186-198
- 32 Lamichhane B, Daniel AGS, Lee JJ. et al. Machine learning analytics of resting-state functional connectivity predicts survival outcomes of glioblastoma multiforme patients. Front Neurol 2021; 12: 642241
- 33 Krishna S, Choudhury A, Keough MB. et al. Glioblastoma remodelling of human neural circuits decreases survival. Nature 2023; 617: 599-607
- 34 Nenning K, Furtner J, Kiesel B. et al. Distributed changes of the functional connectome in patients with glioblastoma. Sci Rep 2020; 10
- 35 Mandal AS, Romero-García R, Hart M. et al. Genetic, cellular, and connectomic characterization of the brain regions commonly plagued by glioma. Brain 2020; 143: 3294-3307
- 36 Stoecklein VM, Wunderlich S, Papazov B. et al. Perifocal edema in patients with meningioma is associated with impaired whole-brain connectivity as detected by resting-state fMRI. AJNR Am J Neuroradiol 2023; 44: 814-819
- 37 Stoecklein S, Wunderlich S, Papazov B. et al. Functional connectivity MRI provides an imaging correlate for chimeric antigen receptor T-cell-associated neurotoxicity. Neurooncol Adv 2023; 5: vdad135
- 38 Toloknieiev A, Voitsekhivskyi D, Kholodkov H. et al. Quantification of brain functional connectivity deviations in individuals: A scoping review of functional MRI studies. medRxiv 2024;
- 39 Bookheimer SY, Salat DH, Terpstra M. et al. The lifespan Human Connectome Project in aging: An overview. Neuroimage 2019; 185: 335-348
- 40 Van Dijk KRA, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 2012; 59: 431-438
- 41 Wunderlich S, Alici C, Motevalli S. et al. Denoising strategies of functional connectivity MRI data in lesional and non-lesional brain diseases. Imaging Neurosci (Camb) 2025;
- 42 Jellison BJ, Field A, Medow J. et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR American journal of neuroradiology 2004; 25: 356-369
- 43 Mori S, van Zijl PCM. Fiber tracking: principles and strategies – a technical review. NMR Biomed 2002; 15: 468-480
- 44 Le Bihan D, Mangin JF, Poupon C. et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001; 13: 534-546
- 45 Gerrish AC, Thomas AG, Dineen RA. Brain white matter tracts: functional anatomy and clinical relevance. Semin Ultrasound CT MR 2014; 35: 432-444
- 46 Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994; 103: 247-254
- 47 Henderson F, Abdullah KG, Verma R. et al. Tractography and the connectome in neurosurgical treatment of gliomas: the premise, the progress, and the potential. Neurosurg Focus 2020; 48: E6
- 48 Mukherjee P, Berman JI, Chung SW. et al. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol 2008; 29: 632-641
- 49 Ramos-Llordén G, Lee H-H, Davids M. et al. Ultra-high gradient connectomics and microstructure MRI scanner for imaging of human brain circuits across scales. Nat Biomed Eng 2025; 1-16
- 50 Yeh F-C, Irimia A, Bastos DC de A. et al. Tractography methods and findings in brain tumors and traumatic brain injury. Neuroimage 2021; 245: 118651
- 51 Grisot G, Haber SN, Yendiki A. Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography. Neuroimage 2021; 239: 118300
- 52 Panigrahy A, Borzage M, Blüml S. Basic principles and concepts underlying recent advances in magnetic resonance imaging of the developing brain. Semin Perinatol 2010; 34: 3-19
- 53 Behrens TEJ, Berg HJ, Jbabdi S. et al. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?. Neuroimage 2007; 34: 144-155
- 54 Seow P, Hernowo AT, Narayanan V. et al. Neural fiber integrity in high- versus low-grade glioma using probabilistic fiber tracking. Acad Radiol 2021; 28: 1721-1732
- 55 Hu B, Ye B, Yang Y. et al. Quantitative diffusion tensor deterministic and probabilistic fiber tractography in relapsing-remitting multiple sclerosis. Eur J Radiol 2011; 79: 101-107
- 56 Li Z, Peck KK, Brennan NP. et al. Diffusion tensor tractography of the arcuate fasciculus in patients with brain tumors: Comparison between deterministic and probabilistic models. J Biomed Sci Eng 2013; 6: 192-200
- 57 Zolal A, Sobottka SB, Podlesek D. et al. Comparison of probabilistic and deterministic fiber tracking of cranial nerves. J Neurosurg 2017; 127: 613-621
- 58 Kamagata K, Andica C, Uchida W. et al. Advancements in diffusion MRI tractography for neurosurgery. Invest Radiol 2024; 59: 13-25
- 59 Aylmore H, Young F, Aquilina K. et al. The use of intraoperative tractography in brain tumor and epilepsy surgery: a systematic review and meta-analysis. Front Neuroimaging 2025; 4
- 60 Cozzi FM, Mayrand RC, Wan Y. et al. Predicting glioblastoma progression using MR diffusion tensor imaging: A systematic review. J Neuroimaging 2025; 35: e13251
- 61 Chamberland M, Genc S, Tax CMW. et al. Detecting microstructural deviations in individuals with deep diffusion MRI tractometry. Nat Comput Sci 2021; 1: 598-606
- 62 Sprugnoli G, Rossi S, Rotenberg A. et al. Personalised, image-guided, noninvasive brain stimulation in gliomas: Rationale, challenges and opportunities. EBioMedicine 2021; 70: 103514
