Open Access
CC BY 4.0 · Sustainability & Circularity NOW 2026; 03: a27789185
DOI: 10.1055/a-2778-9185
Policy Report

Algae-Driven Transition from Oil to Renewable Alternatives: Policy for Scale and Sustainability

Authors

  • Timo Gehring

    1   School of Engineering, htw Saar, University of Applied Sciences, Saarbrücken, Germany (Ringgold ID: RIN542179)
  • Yvonne S. L. Choo

    2   Kelip-kelip! Center of Excellence for Light Enabling Technologies, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia (Ringgold ID: RIN528448)
  • Juliana Vidal

    3   Beyond Benign Inc., Wilmington, United States (Ringgold ID: RIN116697)
  • Fun Man Fung

    4   UCD Geary Institute for Public Policy, University College Dublin, Bedfield, Ireland (Ringgold ID: RIN8797)
    5   School of Chemistry, UCD College of Science, University College Dublin, Belfield, Ireland (Ringgold ID: RIN38023)

F. M. F. is grateful for a grant (R28085) from UCD in the start-up package. Y. S. L. C is grateful for Xiamen University Malaysia Research Fund XMUMRF/2021-C7/IENG/0036.
Supported by: Xiamen University Malaysia Research Fund XMUMRF/2021-C7/IENG/0036


Graphical Abstract

Abstract

Algae cultivation offers a transformative alternative to mitigate the environmental and social impacts of fossil fuel dependency, replacing crude oil with a renewable carbon source to produce plastics and chemicals. This policy report evaluates algae technology as a pathway to achieve the United Nations Sustainable Development Goals (UN SDGs), emphasizing scalable and sustainable solutions. Current photobioreactor designs and low productivity hinder industrial-scale adoption (>1000 tons/year/facility); however, artificial lighting and interdisciplinary innovation present viable opportunities. We propose recommendations to accelerate this transition: developing high-productivity strains, novel photobioreactors optimized for scalability; fostering continuous operation and biofilm management; and integrating algae into industrial ecosystems via robust value chains. Education is pivotal — curricula must evolve to embed green chemistry and scale-up principles, equipping students to design sustainable systems. Funding should shift to reward scalable outcomes, verified through rigorous replication, while policies must align with multiple UN SDGs holistically. Cultural acceptance of algae-based products requires reframing public perception through targeted outreach. In uniting engineering, science, and education, this report envisions a bio-based, circular economy driven by algae technology. These advancements, if supported by research, investment, and societal buy-in, can position algae as a cornerstone of long-term sustainability, reducing reliance on fossil resources and fostering a resilient future.



Publication History

Received: 06 April 2025

Accepted after revision: 02 December 2025

Article published online:
19 January 2026

© 2026. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

Bibliographical Record
Timo Gehring, Yvonne S. L. Choo, Juliana Vidal, Fun Man Fung. Algae-Driven Transition from Oil to Renewable Alternatives: Policy for Scale and Sustainability. Sustainability & Circularity NOW 2026; 03: a27789185.
DOI: 10.1055/a-2778-9185
 
  • References

  • 1 Vogt ETC, Weckhuysen BM. Nature 2024; 629 (8011) 295-306
  • 2 World Energy Outlook 2022. International Energy Agency (IEA); 2022. https://www.iea.org/reports/world-energy-outlook-2022 (accessed March 22, 2025)
  • 3 Carus M, Porc O, vom Berg C, Kempen M, Schier F, Tandetzki J. Is there Enough Biomass to Defossilise the Chemicals and Derived Materials Sector by 2050. Hürth; 2025.
  • 4 Hulshof LA. Right First Time in Fine-Chemical Process Scale-Up. Scientific Update LLP; 2013. ISBN: ISBN: 978-0-9533994-1-3
  • 5 Pisano GP. Development Factory: Unlocking the Potential of Process Innovation. Harvard Business Review Press; 1996. ISBN: 978-0875846507
  • 6 Sunliquid https://www.clariant.com/en/Corporate/News/2023/12/Clariant-shuts-its-sunliquid-bioethanol-plant-in-Romania#:~:text=MUTTENZ%2C%20DECEMBER%206%2C%202023%20%E2%80%93%20Clariant%2C%20a%20sustainability-focused,line%20Biofuels%20%26%20Derivatives%20in%20Germany%20%28Straubing%2C%20Plane (accessed March 22, 2025)
  • 7 Crater JS, Lievense JC. FEMS Microbiol Lett 2018; 365 (13)
  • 8 Cordell WT, Avolio G, Takors R, Pfleger BF. Trends Biotechnol 2023; 41 (11) 1442-1457
  • 9 Bettenhausen C. Clariant Is Latest Firm to Pull out of Cellulosic Ethanol. 2023
  • 10 Fung FM, Lederbauer M, Choo YSL. et al. Chem 2024; 10 (12) 3519-3525
  • 11 Marchese M, Buffo G, Santarelli M, Lanzini A. J CO₂ Util 2021; 46
  • 12 Carcea M, Sorto M, Batello C. et al. LWT Food Sci Technol 2015; 62 (01) 753-763
  • 13 J Agric Food Chem 2004; 1 (09) 596-597
  • 14 Fung FM, Widyantoro C, Li SFY. Anal Chem 2024; 96 (18) 6863-6869
  • 15 Fung FM, Watts SF. J Chem Educ 2019; 96 (08) 1620-1629
  • 16 Fung FM, Milić JV, Choo YSL, Kolanowski JL. Synlett 2024; 36 (06) 714-718
  • 17 Ciamician G. Science 1912; 36 (926) 385-394
  • 18 de Vree JH, Bosma R, Janssen M, Barbosa MJ, Wijffels RH. Biotechnol Biofuels 2015; 8: 215
  • 19 Narala RR, Garg S, Sharma KK. et al. Front Energy Res 2016; 4
  • 20 Farouk Kamel E-B, Hanaa HAEB. In: Photosynthesis. Juan Cristóbal García C, Gema Lorena López L. eds. IntechOpen; 2018. p Ch. 5
  • 21 Klein B, Davis R, Wiatrowski M. Algal Biomass Production Via Open Pond Algae Farm Cultivation: 2023 State of Technology and Future Research. National Renewable Energy Laboratory; 2024
  • 22 Kerner M, Wolff T, Brinkmann T. Bioresour Technol 2024; 391 (Pt A) 129917
  • 23 Xu P, Shao S, Qian J. et al. Bioresour Technol 2024; 398: 130528
  • 24 Usher PK, Ross AB, Camargo-Valero MA, Tomlin AS, Gale WF. Biofuels 2014; 5 (03) 331-349
  • 25 Cho C, Nam K, Seo YH. et al. Sci Rep 2019; 9 (01) 1723
  • 26 Golan I. Patent EP21744216A 2021
  • 27 Heining M, Buchholz R. Biotechnol J 2015; 10 (08) 1131-1137
  • 28 Benner P, Meier L, Pfeffer A, Kruger K, Oropeza Vargas JE, Weuster-Botz D. Bioprocess Biosyst Eng 2022; 45 (05) 791-813
  • 29 Treves H, Raanan H, Finkel OM. et al. FEMS Microbiol Ecol 2013; 86 (03) 373-380
  • 30 Kusuma P, Pattison PM, Bugbee B. Hortic Res 2020; 7: 56
  • 31 Khan MI, Shin JH, Kim JD. Microb Cell Factories 2018; 17 (01) 36
  • 32 Mikroalgen-Biotechnologie Gegenwärtiger Stand, Herausforderungen, Ziele. DECHEMA; 2016. 978-3-89746-184-0
    • 33a Wagner I, Braun M, Slenzka K, Posten C. In: Microalgae Biotechnology. Posten C, Feng Chen S. eds. Springer International Publishing; 2016: 143-184
    • 33b Gilcher EB, Lane MKM, Pontious RS, Apatoff MBL, Ahrens-Víquez MM, Zimmerman JB. ACS Sustainable Chem Eng 2025; 13 (04) 1667-1676
    • 33c Yang C, Cavalcante J, Bastos de Freitas B, Lauersen KJ, Szekely G. Chem Eng J 2023; 470
    • 33d Zhang F, Li Z, Chen C. et al. Adv Mater 2024; 36 (03) e2303714
  • 34 Dahlin LR, Gerritsen AT, Henard CA. et al. Commun Biol 2019; 2 (01) 388
  • 35 Dienst D, Wichmann J, Mantovani O, Rodrigues JS, Lindberg P. Sci Rep 2020; 10 (01) 5932
  • 36 Einhaus A, Steube J, Freudenberg RA, Barczyk J, Baier T, Kruse O. Metab Eng 2022; 73: 82-90
  • 37 Crozet P, Navarro FJ, Willmund F. et al. ACS Synth Biol 2018; 7 (09) 2074-2086
  • 38 Malavasi V, Soru S, Cao G. J Phycol 2020; 56 (03) 559-573
  • 39 Scheffen M, Marchal DG, Beneyton T. et al. Nat Catal 2021; 4 (02) 105-115
  • 40 South PF, Cavanagh AP, Liu HW, Ort DR. Science 2019; 363 (6422) eaat9077
  • 41 Arnold C. Future Proofing Photosynthesis. 2024
  • 42 Algae Capital https://algaecapital.com/ (accessed December 30, 2024)
  • 43 AlgaeCytes Limited https://algaecytes.com/ (accessed December 30, 2024)
  • 44 Kamravamanesh D, Kiesenhofer D, Fluch S, Lackner M, Herwig C. Int J Biobased Plast 2019; 1 (01) 60-71
  • 45 Yap XY, Gew LT, Khalid M, Yow Y-Y. J Polym Environ 2022; 31 (03) 833-851
  • 46 Borowitzka MA, Vonshak A. Eur J Phycol 2017; 52 (04) 407-418
  • 47 Flemming HC, Wingender J. Nat Rev Microbiol 2010; 8 (09) 623-633
  • 48 Strieth D, Schwing J, Kuhne S, Lakatos M, Muffler K, Ulber R. J Biotechnol 2017; 256: 6-12
  • 49 Cho DH, Ramanan R, Heo J. et al. Bioresour Technol 2015; 175: 578-585
  • 50 Lindemann SR, Bernstein HC, Song H-S. et al. ISME J 2016; 10 (09) 2077-2084
  • 51 Padmaperuma G, Kapoore RV, Gilmour DJ, Vaidyanathan S. Crit Rev Biotechnol 2018; 38 (05) 690-703
  • 52 Ulmer A, Veit S, Erdemann F. et al. Bioengineering 2023; 10 (01)
  • 53 Barros A, Pereira H, Campos J, Marques A, Varela J, Silva J. Sci Rep 2019; 9 (01) 13935
  • 54 Jin M, Xu Y, Chen J. et al. Energy Convers Manag 2024; 299
  • 55 Tazikeh S, Zendehboudi S, Ghafoori S, Lohi A, Mahinpey N. Chem Eng 2022; 10 (03)
  • 56 Anastas PT, Warner JC. Green Chemistry: Theory and Practice. Oxford University Press; 2000.
  • 57 Halpaap A, Hannahan C. Specialized Manual on Green and Sustainable Chemistry Education and Learning. 2023
  • 58 Beyond Benign https://www.beyondbenign.org/school_profiles/university-college-dublin/ (accessed December 27, 2024)
  • 59 Cannon AS, Warner JC, Vidal JL. et al. Green Chem 2024; 26 (12) 6983-6993
  • 60 Fung FM, Blanc E, Coumoul X. ACS Pharmacol Transl Sci 2024;
  • 61 Kader SN, Ng WB, Tan SWL, Fung FM. J Chem Educ 2020; 97 (09) 2651-2656
  • 62 Han JY, Fung FM. Chem Teacher Int 2024;
  • 63 Ng JDA, Swee DWJ, Fung FM, Wong LC, Peck T-G. Chem Teacher Int 2024;
  • 64 Fung FM, Choo WY, Ardisara A. et al. J Chem Educ 2019; 96 (02) 382-386
  • 65 MySpirulina https://my-spirulina.de/# (accessed December 30, 2024)
  • 66 Kralisch D, Ott D, Gericke D. Green Chem 2015; 17 (01) 123-145
  • 67 Industrial Algae Measurements. Technical Standards Committee Algae Biomass Association. 2017 Version 8.0
  • 68 Devadas VV, Khoo KS, Chia WY. et al. Bioresour Technol 2021; 325: 124702
  • 69 Haarich S. Bioeconomy Development in EU Regions: Mapping of EU Member States'/Regions’ Research and Innovation Plans & Strategies for Smart Specialisation (RIS3) on Bioeconomy. Publications Office of the European Union; 2017
  • 70 Posten C. Eng Life Sci 2009; 9 (03) 165-177
  • 71 Banerjee S, Mandari V, Shalini M, Nithyashree R, Kinage C. Recent Trends and Developments in Algal Biofuels and Biorefinery. Environmental Science and Engineering; 2024: 239-262
  • 72 Makepa DC, Chihobo CH. Heliyon 2024; 10 (12) e32649
  • 73 Katiyar R, Banerjee S, Arora A. Biofuels Bioprod Biorefin 2021; 15 (03) 879-898
  • 74 Gehring T. Exhibition film ACHEMA 2024 Prof. Dr. Timo Gehring, Mendeley Data, V1.
  • 76 Doshi A, Pascoe S, Coglan L, Rainey TJ. Renew Sust Energ Rev 2016; 64: 329-337
    • 77a Schwander T, Schada von Borzyskowski L, Burgener S, Cortina NS, Erb TJ. Science 2016; 354 (6314) 900-904
    • 77b Scheffen M, Marchal DG, Beneyton T. et al. Nat Catal 2021; 4 (02) 105-115
  • 78 Audas C, Ugalde S, Paillé C, Lamaze B, Lasseur C. Ecol Eng Environ Prot 2022; 1 (2022) 5-13